These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22463948)

  • 1. Effect of vegetative filter strips on herbicide runoff under various types of rainfall.
    Otto S; Cardinali A; Marotta E; Paradisi C; Zanin G
    Chemosphere; 2012 Jun; 88(1):113-9. PubMed ID: 22463948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a full-grown vegetative filter strip on herbicide runoff: maintaining of filter capacity over time.
    Otto S; Vianello M; Infantino A; Zanin G; Di Guardo A
    Chemosphere; 2008 Mar; 71(1):74-82. PubMed ID: 18045643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Herbicide losses in runoff events from a field with a low slope: role of a vegetative filter strip.
    Vianello M; Vischetti C; Scarponi L; Zanin G
    Chemosphere; 2005 Nov; 61(5):717-25. PubMed ID: 16219506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissipation of terbuthylazine, metolachlor, and mesotrione in soils with contrasting texture.
    Carretta L; Cardinali A; Marotta E; Zanin G; Masin R
    J Environ Sci Health B; 2018; 53(10):661-668. PubMed ID: 29842837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Runoff and leaching of metolachlor from Mississippi River alluvial soil during seasons of average and below-average rainfall.
    Southwick LM; Appelboom TW; Fouss JL
    J Agric Food Chem; 2009 Feb; 57(4):1413-20. PubMed ID: 19178284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of grass and grass with poplar buffer strips on atrazine and metolachlor losses in surface runoff and subsurface infiltration from agricultural plots.
    Caron E; Lafrance P; Auclair JC; Duchemin M
    J Environ Qual; 2010; 39(2):617-29. PubMed ID: 20176835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Runoff and leaching of atrazine and alachlor on a sandy soil as affected by application in sprinkler irrigation.
    Abdel-Rahman AR; Wauchope RD; Truman CC; Dowler CC
    J Environ Sci Health B; 1999 May; 34(3):381-96. PubMed ID: 10227190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of buffer strips and soil texture on runoff losses of flufenacet and isoxaflutole from maize fields.
    Milan M; Ferrero A; Letey M; De Palo F; Vidotto F
    J Environ Sci Health B; 2013; 48(12):1021-33. PubMed ID: 24007479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Buffer strip effect on terbuthylazine, desethyl-terbuthylazine and S-metolachlor runoff from maize fields in Northern Italy.
    Milan M; Vidotto F; Piano S; Negre M; Ferrero A
    Environ Technol; 2013; 34(1-4):71-80. PubMed ID: 23530317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vegetated Ditches for the Mitigation of Pesticides Runoff in the Po Valley.
    Otto S; Pappalardo SE; Cardinali A; Masin R; Zanin G; Borin M
    PLoS One; 2016; 11(4):e0153287. PubMed ID: 27070781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atrazine and metolachlor in surface runoff under typical rainfall conditions in southern Louisiana.
    Southwick LM; Grigg BC; Fouss JL; Kornecki TS
    J Agric Food Chem; 2003 Aug; 51(18):5355-61. PubMed ID: 12926883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Herbicide incorporation by irrigation and tillage impact on runoff loss.
    Potter TL; Truman CC; Strickland TC; Bosch DD; Webster TM
    J Environ Qual; 2008; 37(3):839-47. PubMed ID: 18453405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Herbicide monitoring in soil, runoff waters and sediments in an olive orchard.
    Calderon MJ; De Luna E; Gomez JA; Hermosin MC
    Sci Total Environ; 2016 Nov; 569-570():416-422. PubMed ID: 27351146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spot Spraying Reduces Herbicide Concentrations in Runoff.
    Melland AR; Silburn DM; McHugh AD; Fillols E; Rojas-Ponce S; Baillie C; Lewis S
    J Agric Food Chem; 2016 May; 64(20):4009-20. PubMed ID: 26479195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement of simazine in runoff water and weed control from citrus orchard as affected by reduced rate of herbicide application.
    Liu F; O'Connell N
    Bioresour Technol; 2003 Feb; 86(3):253-8. PubMed ID: 12688468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced surface runoff losses of metolachlor in narrow-row compared to wide-row soybean.
    Krutz LJ; Koger CH; Locke MA; Steinriede RW
    J Environ Qual; 2007; 36(5):1331-7. PubMed ID: 17636295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Runoff of trifluralin, metolachlor, and metribuzin from a clay loam soil of Louisiana.
    Kim JH; Feagley SE
    J Environ Sci Health B; 2002 Sep; 37(5):405-15. PubMed ID: 12369759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tillage system, application rate, and extreme event effects on herbicide losses in surface runoff.
    Shipitalo MJ; Owens LB
    J Environ Qual; 2006; 35(6):2186-94. PubMed ID: 17071888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of rainfall regimes and mulch decomposition on the dissipation and leaching of S-metolachlor and glyphosate: a soil column experiment.
    Aslam S; Iqbal A; Deschamps M; Recous S; Garnier P; Benoit P
    Pest Manag Sci; 2015 Feb; 71(2):278-91. PubMed ID: 24753267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of hairy vetch cover crop on herbicide transport under field and laboratory conditions.
    Sadeghi AM; Isensee AR
    Chemosphere; 2001 Jul; 44(2):109-18. PubMed ID: 11444292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.