BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 22464471)

  • 21. Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome.
    Koo DH; Han F; Birchler JA; Jiang J
    Genome Res; 2011 Jun; 21(6):908-14. PubMed ID: 21518739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nuclear architecture and chromosome dynamics in the search of the pairing partner in meiosis in plants.
    Naranjo T; Corredor E
    Cytogenet Genome Res; 2008; 120(3-4):320-30. PubMed ID: 18504361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nucleosomes that mark centromere location on chromosomes old and new.
    Gambogi CW; Black BE
    Essays Biochem; 2019 Apr; 63(1):15-27. PubMed ID: 31015381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize.
    Liu Y; Su H; Pang J; Gao Z; Wang XJ; Birchler JA; Han F
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):E1263-71. PubMed ID: 25733907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dicentric chromosomes: unique models to study centromere function and inactivation.
    Stimpson KM; Matheny JE; Sullivan BA
    Chromosome Res; 2012 Jul; 20(5):595-605. PubMed ID: 22801777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic and epigenetic effects on centromere establishment.
    Ling YH; Lin Z; Yuen KWY
    Chromosoma; 2020 Mar; 129(1):1-24. PubMed ID: 31781852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant chromosomes from end to end: telomeres, heterochromatin and centromeres.
    Lamb JC; Yu W; Han F; Birchler JA
    Curr Opin Plant Biol; 2007 Apr; 10(2):116-22. PubMed ID: 17291819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Genetic regulation of the centromere division in rye and wheat univalent chromosomes in dimonosomics during meiotic anaphase I].
    Silkova OG; Peresmyslova EE; Shchapova AI; Shumnyĭ VK
    Genetika; 2008 Jan; 44(1):102-11. PubMed ID: 18409392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetic specification of centromeres by CENP-A.
    Bernad R; Sánchez P; Losada A
    Exp Cell Res; 2009 Nov; 315(19):3233-41. PubMed ID: 19660450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Mitotic behavior of centromeres in meiosis as the fertility restoration mechanism in wheat-rye amphihaploids].
    Loginova DB; Silkova OG
    Genetika; 2014 Aug; 50(8):930-9. PubMed ID: 25731022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stable barley chromosomes without centromeric repeats.
    Nasuda S; Hudakova S; Schubert I; Houben A; Endo TR
    Proc Natl Acad Sci U S A; 2005 Jul; 102(28):9842-7. PubMed ID: 15998740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct centromere domain structures with separate functions demonstrated in live fission yeast cells.
    Appelgren H; Kniola B; Ekwall K
    J Cell Sci; 2003 Oct; 116(Pt 19):4035-42. PubMed ID: 12928332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres.
    Liu Z; Yue W; Li D; Wang RR; Kong X; Lu K; Wang G; Dong Y; Jin W; Zhang X
    Chromosoma; 2008 Oct; 117(5):445-56. PubMed ID: 18496705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong epigenetic similarity between maize centromeric and pericentromeric regions at the level of small RNAs, DNA methylation and H3 chromatin modifications.
    Gent JI; Dong Y; Jiang J; Dawe RK
    Nucleic Acids Res; 2012 Feb; 40(4):1550-60. PubMed ID: 22058126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids.
    Guo X; Su H; Shi Q; Fu S; Wang J; Zhang X; Hu Z; Han F
    PLoS Genet; 2016 Apr; 12(4):e1005997. PubMed ID: 27110907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of retrotransposons in the centromeric regions of A and B chromosomes of maize.
    Theuri J; Phelps-Durr T; Mathews S; Birchler J
    Cytogenet Genome Res; 2005; 110(1-4):203-8. PubMed ID: 16093673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The genetic and epigenetic landscape of the
    Naish M; Alonge M; Wlodzimierz P; Tock AJ; Abramson BW; Schmücker A; Mandáková T; Jamge B; Lambing C; Kuo P; Yelina N; Hartwick N; Colt K; Smith LM; Ton J; Kakutani T; Martienssen RA; Schneeberger K; Lysak MA; Berger F; Bousios A; Michael TP; Schatz MC; Henderson IR
    Science; 2021 Nov; 374(6569):eabi7489. PubMed ID: 34762468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inbreeding drives maize centromere evolution.
    Schneider KL; Xie Z; Wolfgruber TK; Presting GG
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):E987-96. PubMed ID: 26858403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered human dicentric chromosomes show centromere plasticity.
    Higgins AW; Gustashaw KM; Willard HF
    Chromosome Res; 2005; 13(8):745-62. PubMed ID: 16331407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant centromere organization: a dynamic structure with conserved functions.
    Ma J; Wing RA; Bennetzen JL; Jackson SA
    Trends Genet; 2007 Mar; 23(3):134-9. PubMed ID: 17275131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.