These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 22464896)
1. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: empirical assessment. Cagnacci F; Bolzoni L; Rosà R; Carpi G; Hauffe HC; Valent M; Tagliapietra V; Kazimirova M; Koci J; Stanko M; Lukan M; Henttonen H; Rizzoli A Int J Parasitol; 2012 Apr; 42(4):365-72. PubMed ID: 22464896 [TBL] [Abstract][Full Text] [Related]
2. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Bolzoni L; Rosà R; Cagnacci F; Rizzoli A Int J Parasitol; 2012 Apr; 42(4):373-81. PubMed ID: 22429768 [TBL] [Abstract][Full Text] [Related]
4. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Jaenson TG; Hjertqvist M; Bergström T; Lundkvist A Parasit Vectors; 2012 Aug; 5():184. PubMed ID: 22937961 [TBL] [Abstract][Full Text] [Related]
5. Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy. Rosà R; Tagliapietra V; Manica M; Arnoldi D; Hauffe HC; Rossi C; Rosso F; Henttonen H; Rizzoli A Int J Parasitol; 2019 Sep; 49(10):779-787. PubMed ID: 31348960 [TBL] [Abstract][Full Text] [Related]
6. Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics. Rosà R; Pugliese A; Ghosh M; Perkins SE; Rizzoli A Vector Borne Zoonotic Dis; 2007; 7(3):285-95. PubMed ID: 17760511 [TBL] [Abstract][Full Text] [Related]
7. Effect of host populations on the intensity of ticks and the prevalence of tick-borne pathogens: how to interpret the results of deer exclosure experiments. Pugliese A; Rosà R Parasitology; 2008 Nov; 135(13):1531-44. PubMed ID: 18442427 [TBL] [Abstract][Full Text] [Related]
8. Microclimate and the zoonotic cycle of tick-borne encephalitis virus in Switzerland. Burri C; Bastic V; Maeder G; Patalas E; Gern L J Med Entomol; 2011 May; 48(3):615-27. PubMed ID: 21661323 [TBL] [Abstract][Full Text] [Related]
9. Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Randolph SE; Miklisová D; Lysy J; Rogers DJ; Labuda M Parasitology; 1999 Feb; 118 ( Pt 2)():177-86. PubMed ID: 10028532 [TBL] [Abstract][Full Text] [Related]
10. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Jaenson TGT; Petersson EH; Jaenson DGE; Kindberg J; Pettersson JH; Hjertqvist M; Medlock JM; Bengtsson H Parasit Vectors; 2018 Aug; 11(1):477. PubMed ID: 30153856 [TBL] [Abstract][Full Text] [Related]
11. Detection and genetic characterization of tick-borne encephalitis virus (TBEV) derived from ticks removed from red foxes (Vulpes vulpes) and isolated from spleen samples of red deer (Cervus elaphus) in Croatia. Jemeršić L; Dežđek D; Brnić D; Prpić J; Janicki Z; Keros T; Roić B; Slavica A; Terzić S; Konjević D; Beck R Ticks Tick Borne Dis; 2014 Feb; 5(1):7-13. PubMed ID: 24035586 [TBL] [Abstract][Full Text] [Related]
12. Tick-borne encephalitis virus foci in Slovakia. Labuda M; Elecková E; Licková M; Sabó A Int J Med Microbiol; 2002 Jun; 291 Suppl 33():43-7. PubMed ID: 12141756 [TBL] [Abstract][Full Text] [Related]
14. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Labuda M; Kozuch O; Zuffová E; Elecková E; Hails RS; Nuttall PA Virology; 1997 Aug; 235(1):138-43. PubMed ID: 9300045 [TBL] [Abstract][Full Text] [Related]
15. Variation in parameters affecting risk of human disease due to TBE virus. Korenberg EI; Kovalevskii YuV Folia Parasitol (Praha); 1995; 42(4):307-12. PubMed ID: 8774782 [TBL] [Abstract][Full Text] [Related]
16. The role of game (wild boar and roe deer) in the spread of tick-borne encephalitis in the Czech Republic. Kriz B; Daniel M; Benes C; Maly M Vector Borne Zoonotic Dis; 2014 Nov; 14(11):801-7. PubMed ID: 25409271 [TBL] [Abstract][Full Text] [Related]
17. Tick-borne encephalitis virus in northern Italy: molecular analysis, relationships with density and seasonal dynamics of Ixodes ricinus. Hudson PJ; Rizzoli A; Rosà R; Chemini C; Jones LD; Gould EA Med Vet Entomol; 2001 Sep; 15(3):304-13. PubMed ID: 11583449 [TBL] [Abstract][Full Text] [Related]
18. Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Tagliapietra V; Rosà R; Arnoldi D; Cagnacci F; Capelli G; Montarsi F; Hauffe HC; Rizzoli A Vet Parasitol; 2011 Dec; 183(1-2):114-24. PubMed ID: 21820245 [TBL] [Abstract][Full Text] [Related]
19. Factors affecting patterns of tick parasitism on forest rodents in tick-borne encephalitis risk areas, Germany. Kiffner C; Vor T; Hagedorn P; Niedrig M; Rühe F Parasitol Res; 2011 Feb; 108(2):323-35. PubMed ID: 20878183 [TBL] [Abstract][Full Text] [Related]
20. Sixty years of research of tick-borne encephalitis--a basis of the current knowledge of the epidemiological situation in Central Europe. Daniel M; Benes C; Danielová V; Kríz B Epidemiol Mikrobiol Imunol; 2011 Nov; 60(4):135-55. PubMed ID: 22324243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]