BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22465409)

  • 1. MAP17 and the double-edged sword of ROS.
    Carnero A
    Biochim Biophys Acta; 2012 Aug; 1826(1):44-52. PubMed ID: 22465409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p38α limits the contribution of MAP17 to cancer progression in breast tumors.
    Guijarro MV; Vergel M; Marin JJ; Muñoz-Galván S; Ferrer I; Ramon y Cajal S; Roncador G; Blanco-Aparicio C; Carnero A
    Oncogene; 2012 Oct; 31(41):4447-59. PubMed ID: 22266858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAP17, a ROS-dependent oncogene.
    Carnero A
    Front Oncol; 2012; 2():112. PubMed ID: 22973555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MAP17 enhances the malignant behavior of tumor cells through ROS increase.
    Guijarro MV; Leal JF; Blanco-Aparicio C; Alonso S; Fominaya J; Lleonart M; Castellvi J; Ramon y Cajal S; Carnero A
    Carcinogenesis; 2007 Oct; 28(10):2096-104. PubMed ID: 17548903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MAP17 inhibits Myc-induced apoptosis through PI3K/AKT pathway activation.
    Guijarro MV; Link W; Rosado A; Leal JF; Carnero A
    Carcinogenesis; 2007 Dec; 28(12):2443-50. PubMed ID: 17675338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAP17 overexpression is a common characteristic of carcinomas.
    Guijarro MV; Leal JF; Fominaya J; Blanco-Aparicio C; Alonso S; Lleonart M; Castellvi J; Ruiz L; Ramon Y Cajal S; Carnero A
    Carcinogenesis; 2007 Aug; 28(8):1646-52. PubMed ID: 17426052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MAP17 and SGLT1 protein expression levels as prognostic markers for cervical tumor patient survival.
    Perez M; Praena-Fernandez JM; Felipe-Abrio B; Lopez-Garcia MA; Lucena-Cacace A; Garcia A; Lleonart M; Roncador G; Marin JJ; Carnero A
    PLoS One; 2013; 8(2):e56169. PubMed ID: 23418532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species regulation of autophagy in cancer: implications for cancer treatment.
    Li L; Ishdorj G; Gibson SB
    Free Radic Biol Med; 2012 Oct; 53(7):1399-410. PubMed ID: 22820461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress marker in oral cancer: A review.
    Katakwar P; Metgud R; Naik S; Mittal R
    J Cancer Res Ther; 2016; 12(2):438-46. PubMed ID: 27461591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial ROS and cancer drug resistance: Implications for therapy.
    Okon IS; Zou MH
    Pharmacol Res; 2015 Oct; 100():170-4. PubMed ID: 26276086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Double-edged sword" effect of reactive oxygen species (ROS) in tumor development and carcinogenesis.
    Zhao W; Zhuang P; Chen Y; Wu Y; Zhong M; Lun Y
    Physiol Res; 2023 Jul; 72(3):301-307. PubMed ID: 37449744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer.
    Pathania D; Sechi M; Palomba M; Sanna V; Berrettini F; Sias A; Taheri L; Neamati N
    Biochim Biophys Acta; 2014 Jan; 1840(1):332-43. PubMed ID: 23954204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paradoxical action of reactive oxygen species in creation and therapy of cancer.
    Kardeh S; Ashkani-Esfahani S; Alizadeh AM
    Eur J Pharmacol; 2014 Jul; 735():150-68. PubMed ID: 24780648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MAP17 (PDZK1IP1) and pH2AX are potential predictive biomarkers for rectal cancer treatment efficacy.
    Rivero M; Peinado-Serrano J; Muñoz-Galvan S; Espinosa-Sánchez A; Suarez-Martinez E; Felipe-Abrio B; Fernández-Fernández MC; Ortiz MJ; Carnero A
    Oncotarget; 2018 Aug; 9(68):32958-32971. PubMed ID: 30250642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Double-Edged Sword Profile of Redox Signaling: Oxidative Events As Molecular Switches in the Balance between Cell Physiology and Cancer.
    Emanuele S; D'Anneo A; Calvaruso G; Cernigliaro C; Giuliano M; Lauricella M
    Chem Res Toxicol; 2018 Apr; 31(4):201-210. PubMed ID: 29513521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy.
    Marengo B; Nitti M; Furfaro AL; Colla R; Ciucis CD; Marinari UM; Pronzato MA; Traverso N; Domenicotti C
    Oxid Med Cell Longev; 2016; 2016():6235641. PubMed ID: 27418953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer.
    Zhang L; Li J; Zong L; Chen X; Chen K; Jiang Z; Nan L; Li X; Li W; Shan T; Ma Q; Ma Z
    Oxid Med Cell Longev; 2016; 2016():1616781. PubMed ID: 26881012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.