BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 22465490)

  • 1. Novel transcripts in the maxillary venom glands of advanced snakes.
    Fry BG; Scheib H; de L M Junqueira de Azevedo I; Silva DA; Casewell NR
    Toxicon; 2012 Jun; 59(7-8):696-708. PubMed ID: 22465490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early evolution of the venom system in lizards and snakes.
    Fry BG; Vidal N; Norman JA; Vonk FJ; Scheib H; Ramjan SF; Kuruppu S; Fung K; Hedges SB; Richardson MK; Hodgson WC; Ignjatovic V; Summerhayes R; Kochva E
    Nature; 2006 Feb; 439(7076):584-8. PubMed ID: 16292255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes.
    Ching AT; Paes Leme AF; Zelanis A; Rocha MM; Furtado Mde F; Silva DA; Trugilho MR; da Rocha SL; Perales J; Ho PL; Serrano SM; Junqueira-de-Azevedo IL
    J Proteome Res; 2012 Feb; 11(2):1152-62. PubMed ID: 22168127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia).
    Fry BG; Scheib H; van der Weerd L; Young B; McNaughtan J; Ramjan SF; Vidal N; Poelmann RE; Norman JA
    Mol Cell Proteomics; 2008 Feb; 7(2):215-46. PubMed ID: 17855442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.
    Brahma RK; McCleary RJ; Kini RM; Doley R
    Toxicon; 2015 Jan; 93():1-10. PubMed ID: 25448392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea).
    Pahari S; Mackessy SP; Kini RM
    BMC Mol Biol; 2007 Dec; 8():115. PubMed ID: 18096037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic genetic differentiation drives the widespread structural and functional convergent evolution of snake venom proteinaceous toxins.
    Xie B; Dashevsky D; Rokyta D; Ghezellou P; Fathinia B; Shi Q; Richardson MK; Fry BG
    BMC Biol; 2022 Jan; 20(1):4. PubMed ID: 34996434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and structural diversification of the Anguimorpha lizard venom system.
    Fry BG; Winter K; Norman JA; Roelants K; Nabuurs RJ; van Osch MJ; Teeuwisse WM; van der Weerd L; McNaughtan JE; Kwok HF; Scheib H; Greisman L; Kochva E; Miller LJ; Gao F; Karas J; Scanlon D; Lin F; Kuruppu S; Shaw C; Wong L; Hodgson WC
    Mol Cell Proteomics; 2010 Nov; 9(11):2369-90. PubMed ID: 20631207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy's (venom) gland transcriptome.
    Ching AT; Rocha MM; Paes Leme AF; Pimenta DC; de Fátima D Furtado M; Serrano SM; Ho PL; Junqueira-de-Azevedo IL
    FEBS Lett; 2006 Aug; 580(18):4417-22. PubMed ID: 16857193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular diversity and accelerated evolution of C-type lectin-like proteins from snake venom.
    Ogawa T; Chijiwa T; Oda-Ueda N; Ohno M
    Toxicon; 2005 Jan; 45(1):1-14. PubMed ID: 15581677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of toxic components from the venom of the evolutionarily distinct black whip snake, Demansia vestigiata.
    St Pierre L; Birrell GW; Earl ST; Wallis TP; Gorman JJ; de Jersey J; Masci PP; Lavin MF
    J Proteome Res; 2007 Aug; 6(8):3093-107. PubMed ID: 17608513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What killed Karl Patterson Schmidt? Combined venom gland transcriptomic, venomic and antivenomic analysis of the South African green tree snake (the boomslang), Dispholidus typus.
    Pla D; Sanz L; Whiteley G; Wagstaff SC; Harrison RA; Casewell NR; Calvete JJ
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):814-823. PubMed ID: 28130154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes.
    Rokyta DR; Wray KP; Lemmon AR; Lemmon EM; Caudle SB
    Toxicon; 2011 Apr; 57(5):657-71. PubMed ID: 21255598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles.
    Fry BG; Undheim EA; Ali SA; Jackson TN; Debono J; Scheib H; Ruder T; Morgenstern D; Cadwallader L; Whitehead D; Nabuurs R; van der Weerd L; Vidal N; Roelants K; Hendrikx I; Gonzalez SP; Koludarov I; Jones A; King GF; Antunes A; Sunagar K
    Mol Cell Proteomics; 2013 Jul; 12(7):1881-99. PubMed ID: 23547263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes.
    Pahari S; Bickford D; Fry BG; Kini RM
    BMC Evol Biol; 2007 Sep; 7():175. PubMed ID: 17900344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Rokyta DR; Lemmon AR; Margres MJ; Aronow K
    BMC Genomics; 2012 Jul; 13():312. PubMed ID: 23025625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of snake venom disintegrins by positive Darwinian selection.
    Juárez P; Comas I; González-Candelas F; Calvete JJ
    Mol Biol Evol; 2008 Nov; 25(11):2391-407. PubMed ID: 18701431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent Recruitment of Different Types of Phospholipases A2 to the Venoms of Caenophidian Snakes: The Rise of PLA2-IIE within Pseudoboini (Dipsadidae).
    Bayona-Serrano JD; Grazziotin FG; Salazar-Valenzuela D; Valente RH; Nachtigall PG; Colombini M; Moura-da-Silva A; Junqueira-de-Azevedo ILM
    Mol Biol Evol; 2023 Jul; 40(7):. PubMed ID: 37352150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins.
    Fry BG
    Genome Res; 2005 Mar; 15(3):403-20. PubMed ID: 15741511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing.
    Durban J; Juárez P; Angulo Y; Lomonte B; Flores-Diaz M; Alape-Girón A; Sasa M; Sanz L; Gutiérrez JM; Dopazo J; Conesa A; Calvete JJ
    BMC Genomics; 2011 May; 12():259. PubMed ID: 21605378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.