BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 22465561)

  • 1. Predicting the absorption of chemical vapours.
    Rauma M; Boman A; Johanson G
    Adv Drug Deliv Rev; 2013 Feb; 65(2):306-14. PubMed ID: 22465561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer-controlled system for generation of chemical vapours in in vitro dermal uptake studies.
    Rauma M; Johanson G
    Skin Res Technol; 2007 Feb; 13(1):79-83. PubMed ID: 17250536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting the extent of dermal absorption of solvent vapours: a human volunteer study.
    Jones K; Cocker J; Dodd LJ; Fraser I
    Ann Occup Hyg; 2003 Mar; 47(2):145-50. PubMed ID: 12581998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dermal uptake of solvents from the vapour phase: an experimental study in humans.
    Brooke I; Cocker J; Delic JI; Payne M; Jones K; Gregg NC; Dyne D
    Ann Occup Hyg; 1998 Nov; 42(8):531-40. PubMed ID: 9838866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of human dermal absorption of octamethylcyclotetrasiloxane (D(4)) and decamethylcyclopentasiloxane (D(5)).
    Reddy MB; Looney RJ; Utell MJ; Plotzke KP; Andersen ME
    Toxicol Sci; 2007 Oct; 99(2):422-31. PubMed ID: 17630416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilayered dermal subcompartments for modeling chemical absorption.
    Bookout RL; McDaniel CR; Quinn DW; McDougal JN
    SAR QSAR Environ Res; 1996; 5(3):133-50. PubMed ID: 9114511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new technique to assess dermal absorption of volatile chemicals in vitro by thermal gravimetric analysis.
    Rauma M; Isaksson TS; Johanson G
    Toxicol In Vitro; 2006 Oct; 20(7):1183-9. PubMed ID: 16631342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A physiologically based pharmacokinetic model of organophosphate dermal absorption.
    van der Merwe D; Brooks JD; Gehring R; Baynes RE; Monteiro-Riviere NA; Riviere JE
    Toxicol Sci; 2006 Jan; 89(1):188-204. PubMed ID: 16221965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple dermal absorption model: derivation and application.
    ten Berge W
    Chemosphere; 2009 Jun; 75(11):1440-5. PubMed ID: 19304310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro dermal absorption rate testing of certain chemicals of interest to the Occupational Safety and Health Administration: summary and evaluation of USEPA's mandated testing.
    Fasano WJ; McDougal JN
    Regul Toxicol Pharmacol; 2008 Jul; 51(2):181-94. PubMed ID: 18501488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dermal uptake of petroleum substances.
    Jakasa I; Kezic S; Boogaard PJ
    Toxicol Lett; 2015 Jun; 235(2):123-39. PubMed ID: 25827404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologically based modeling of nonsteady state dermal absorption of halogenated methanes from an aqueous solution.
    Jepson GW; McDougal JN
    Toxicol Appl Pharmacol; 1997 Jun; 144(2):315-24. PubMed ID: 9194415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the thermogravimetric analysis (TGA) and Franz cell methods to assess dermal diffusion of volatile chemicals.
    Rauma M; Johanson G
    Toxicol In Vitro; 2009 Aug; 23(5):919-26. PubMed ID: 19379803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New in vitro dermal absorption database and the prediction of dermal absorption under finite conditions for risk assessment purposes.
    Buist HE; van Burgsteden JA; Freidig AP; Maas WJ; van de Sandt JJ
    Regul Toxicol Pharmacol; 2010; 57(2-3):200-9. PubMed ID: 20178823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches for evaluating the relevance of multiroute exposures in establishing guideline values for drinking water contaminants.
    Krishnan K; Carrier R
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(3):300-16. PubMed ID: 18781539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane-coated fiber array approach for predicting skin permeability of chemical mixtures from different vehicles.
    Riviere JE; Baynes RE; Xia XR
    Toxicol Sci; 2007 Sep; 99(1):153-61. PubMed ID: 17557907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of bronchial absorption of vapors in the human lung and its significance in pharmacokinetic modeling.
    Shelley ML; Harris RL; Boehlecke BA
    SAR QSAR Environ Res; 1996; 5(4):221-53. PubMed ID: 9104782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of chemical absorption into and through the skin from cosmetic and dermatological formulations.
    Grégoire S; Ribaud C; Benech F; Meunier JR; Garrigues-Mazert A; Guy RH
    Br J Dermatol; 2009 Jan; 160(1):80-91. PubMed ID: 18811683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel dermal subcompartments for modeling chemical absorption.
    Bookout RL; Quinn DW; McDougal JN
    SAR QSAR Environ Res; 1997; 7(1-4):259-79. PubMed ID: 9501509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.