These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 22465676)
1. Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies. Koutsopoulos S; Zhang S J Control Release; 2012 Jun; 160(3):451-8. PubMed ID: 22465676 [TBL] [Abstract][Full Text] [Related]
2. [Controlled release of fuctional proteins IGF-1, aFGF and VEGF through self-assembling peptide nanofiber hydrogel]. Liu Y; Wu M; Lin B; Zhao X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):310-3. PubMed ID: 21604492 [TBL] [Abstract][Full Text] [Related]
3. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Koutsopoulos S; Unsworth LD; Nagai Y; Zhang S Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4623-8. PubMed ID: 19273853 [TBL] [Abstract][Full Text] [Related]
4. Controlled release of insulin from self-assembling nanofiber hydrogel, PuraMatrix™: application for the subcutaneous injection in rats. Nishimura A; Hayakawa T; Yamamoto Y; Hamori M; Tabata K; Seto K; Shibata N Eur J Pharm Sci; 2012 Jan; 45(1-2):1-7. PubMed ID: 22064453 [TBL] [Abstract][Full Text] [Related]
5. Slow release of molecules in self-assembling peptide nanofiber scaffold. Nagai Y; Unsworth LD; Koutsopoulos S; Zhang S J Control Release; 2006 Sep; 115(1):18-25. PubMed ID: 16962196 [TBL] [Abstract][Full Text] [Related]
6. Self-assembling peptide nanofiber scaffolds for controlled release governed by gelator design and guest size. Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T J Control Release; 2010 Nov; 147(3):392-9. PubMed ID: 20709121 [TBL] [Abstract][Full Text] [Related]
7. Chemotherapeutic Delivery from a Self-Assembling Peptide Nanofiber Hydrogel for the Management of Glioblastoma. Karavasili C; Panteris E; Vizirianakis IS; Koutsopoulos S; Fatouros DG Pharm Res; 2018 Jun; 35(8):166. PubMed ID: 29943122 [TBL] [Abstract][Full Text] [Related]
8. Enhanced angiogenic efficacy through controlled and sustained delivery of FGF-2 and G-CSF from fibrin hydrogels containing ionic-albumin microspheres. Layman H; Li X; Nagar E; Vial X; Pham SM; Andreopoulos FM J Biomater Sci Polym Ed; 2012; 23(1-4):185-206. PubMed ID: 21192837 [TBL] [Abstract][Full Text] [Related]
9. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch. Shaheen SM; Takezoe K; Yamaura K Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386 [TBL] [Abstract][Full Text] [Related]
10. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition. Nam K; Watanabe J; Ishihara K Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127 [TBL] [Abstract][Full Text] [Related]
11. Smart hydrogels from laterally-grafted peptide assembly. Li W; Park IS; Kang SK; Lee M Chem Commun (Camb); 2012 Sep; 48(70):8796-8. PubMed ID: 22836696 [TBL] [Abstract][Full Text] [Related]
12. Drug-triggered and cross-linked self-assembling nanofibrous hydrogels. Kumar VA; Shi S; Wang BK; Li IC; Jalan AA; Sarkar B; Wickremasinghe NC; Hartgerink JD J Am Chem Soc; 2015 Apr; 137(14):4823-30. PubMed ID: 25831137 [TBL] [Abstract][Full Text] [Related]
13. Release of hydrophobic anticancer drug from a newly designed self-assembling peptide. Wu M; Ye Z; Liu Y; Liu B; Zhao X Mol Biosyst; 2011 Jun; 7(6):2040-7. PubMed ID: 21491031 [TBL] [Abstract][Full Text] [Related]
14. High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide. Soni G; Yadav KS Pharm Dev Technol; 2014 Sep; 19(6):651-61. PubMed ID: 23879721 [TBL] [Abstract][Full Text] [Related]
15. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release. Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T J Control Release; 2010 Mar; 142(3):354-60. PubMed ID: 19932721 [TBL] [Abstract][Full Text] [Related]
16. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190 [TBL] [Abstract][Full Text] [Related]
17. Injectable and thermoresponsive self-assembled nanocomposite hydrogel for long-term anticancer drug delivery. Chen YY; Wu HC; Sun JS; Dong GC; Wang TW Langmuir; 2013 Mar; 29(11):3721-9. PubMed ID: 23441993 [TBL] [Abstract][Full Text] [Related]
18. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration. Sun Y; Li W; Wu X; Zhang N; Zhang Y; Ouyang S; Song X; Fang X; Seeram R; Xue W; He L; Wu W ACS Appl Mater Interfaces; 2016 Jan; 8(3):2348-59. PubMed ID: 26720334 [TBL] [Abstract][Full Text] [Related]
19. Potential use of gamma-cyclodextrin polypseudorotaxane hydrogels as an injectable sustained release system for insulin. Abu Hashim II; Higashi T; Anno T; Motoyama K; Abd-ElGawad AE; El-Shabouri MH; Borg TM; Arima H Int J Pharm; 2010 Jun; 392(1-2):83-91. PubMed ID: 20298768 [TBL] [Abstract][Full Text] [Related]
20. Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery. Censi R; Vermonden T; van Steenbergen MJ; Deschout H; Braeckmans K; De Smedt SC; van Nostrum CF; di Martino P; Hennink WE J Control Release; 2009 Dec; 140(3):230-6. PubMed ID: 19527757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]