BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22465705)

  • 1. An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data.
    McCamley J; Donati M; Grimpampi E; MazzĂ  C
    Gait Posture; 2012 Jun; 36(2):316-8. PubMed ID: 22465705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of inertial sensors for ambulatory assessment of center-of-mass displacements during walking.
    Floor-Westerdijk MJ; Schepers HM; Veltink PH; van Asseldonk EH; Buurke JH
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2080-4. PubMed ID: 22665499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of gait patterns in the time-frequency domain.
    Nyan MN; Tay FE; Seah KH; Sitoh YY
    J Biomech; 2006; 39(14):2647-56. PubMed ID: 16212968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk.
    Trojaniello D; Cereatti A; Della Croce U
    Gait Posture; 2014 Sep; 40(4):487-92. PubMed ID: 25085660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance.
    Peruzzi A; Della Croce U; Cereatti A
    J Biomech; 2011 Jul; 44(10):1991-4. PubMed ID: 21601860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ambulatory estimation of foot placement during walking using inertial sensors.
    Martin Schepers H; van Asseldonk EH; Baten CT; Veltink PH
    J Biomech; 2010 Dec; 43(16):3138-43. PubMed ID: 20723901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambulatory running speed estimation using an inertial sensor.
    Yang S; Mohr C; Li Q
    Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimized Kalman filter for the estimate of trunk orientation from inertial sensors data during treadmill walking.
    MazzĂ  C; Donati M; McCamley J; Picerno P; Cappozzo A
    Gait Posture; 2012 Jan; 35(1):138-42. PubMed ID: 22047775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking.
    Yang S; Li Q
    Comput Methods Biomech Biomed Engin; 2012; 15(3):313-22. PubMed ID: 21294007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of temporal parameters during sprint running using a trunk-mounted inertial measurement unit.
    Bergamini E; Picerno P; Pillet H; Natta F; Thoreux P; Camomilla V
    J Biomech; 2012 Apr; 45(6):1123-6. PubMed ID: 22325976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Walking speed estimation using a shank-mounted inertial measurement unit.
    Li Q; Young M; Naing V; Donelan JM
    J Biomech; 2010 May; 43(8):1640-3. PubMed ID: 20185136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time gait event detection using wearable sensors.
    Hanlon M; Anderson R
    Gait Posture; 2009 Nov; 30(4):523-7. PubMed ID: 19729307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls.
    Selles RW; Formanoy MA; Bussmann JB; Janssens PJ; Stam HJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):81-8. PubMed ID: 15813409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of walking patterns using wavelet-based fractal analysis.
    Sekine M; Tamura T; Akay M; Fujimoto T; Togawa T; Fukui Y
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):188-96. PubMed ID: 12503784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of DynaPort GaitMonitor for assessment of spatiotemporal parameters in amputee gait.
    Houdijk H; Appelman FM; Van Velzen JM; Van der Woude LH; Van Bennekom CA
    J Rehabil Res Dev; 2008; 45(9):1335-42. PubMed ID: 19319757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A body-fixed-sensor based analysis of compensatory trunk movements during unconstrained walking.
    Zijlstra A; Goosen JH; Verheyen CC; Zijlstra W
    Gait Posture; 2008 Jan; 27(1):164-7. PubMed ID: 17433685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models.
    Yang S; Laudanski A; Li Q
    Med Biol Eng Comput; 2012 Apr; 50(4):383-93. PubMed ID: 22418894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying symmetry in running gait using a single inertial sensor.
    Lee JB; Sutter KJ; Askew CD; Burkett BJ
    J Sci Med Sport; 2010 Sep; 13(5):559-63. PubMed ID: 19850518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upper body accelerations during walking in healthy young and elderly men.
    Kavanagh JJ; Barrett RS; Morrison S
    Gait Posture; 2004 Dec; 20(3):291-8. PubMed ID: 15531176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.