These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22465807)

  • 1. Impairment of carotid artery blood flow by supraglottic airway use in a swine model of cardiac arrest.
    Segal N; Yannopoulos D; Mahoney BD; Frascone RJ; Matsuura T; Cowles CG; McKnite SH; Chase DG
    Resuscitation; 2012 Aug; 83(8):1025-30. PubMed ID: 22465807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of endotracheal intubation and supraglottic airway device placement during cardiopulmonary resuscitation on carotid blood flow over resuscitation time: An experimental porcine cardiac arrest study.
    Kim TH; Hong KJ; Shin SD; Lee JC; Choi DS; Chang I; Joo YH; Ro YS; Song KJ
    Resuscitation; 2019 Jun; 139():269-274. PubMed ID: 31009692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs.
    Yannopoulos D; Aufderheide TP; McKnite S; Kotsifas K; Charris R; Nadkarni V; Lurie KG
    Resuscitation; 2006 Jun; 69(3):487-94. PubMed ID: 16678959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A randomized comparison of cardiocerebral and cardiopulmonary resuscitation using a swine model of prolonged ventricular fibrillation.
    Mader TJ; Kellogg AR; Walterscheid JK; Lodding CC; Sherman LD
    Resuscitation; 2010 May; 81(5):596-602. PubMed ID: 20176434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sternal accelerometer does not impair hemodynamics during piglet CPR.
    Zuercher M; Hilwig RW; Gura M; Nysaether J; Nadkarni VM; Berg MD; Kern KB; Berg RA
    Resuscitation; 2011 Sep; 82(9):1231-4. PubMed ID: 21632167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation.
    Niemann JT; Rosborough JP; Kassabian L; Salami B
    Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of a 10-breaths-per-minute versus a 2-breaths-per-minute strategy during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Lurie KG; Yannopoulos D; McKnite SH; Herman ML; Idris AH; Nadkarni VM; Tang W; Gabrielli A; Barnes TA; Metzger AK
    Respir Care; 2008 Jul; 53(7):862-70. PubMed ID: 18593487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG
    Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nitric oxide synthase modulation on resuscitation success in a swine ventricular fibrillation cardiac arrest model.
    Zhang Y; Boddicker KA; Rhee BJ; Davies LR; Kerber RE
    Resuscitation; 2005 Oct; 67(1):127-34. PubMed ID: 16039037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms.
    Halperin HR; Paradis N; Ornato JP; Zviman M; Lacorte J; Lardo A; Kern KB
    J Am Coll Cardiol; 2004 Dec; 44(11):2214-20. PubMed ID: 15582320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The impact of quality of cardiopulmonary resuscitation on post-resuscitation inflammatory reaction in a porcine cardiac arrest model].
    Wu JY; Li CS
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2008 Aug; 20(8):469-71. PubMed ID: 18687173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous gasping produces carotid blood flow during untreated cardiac arrest.
    Ristagno G; Tang W; Sun S; Weil MH
    Resuscitation; 2007 Nov; 75(2):366-71. PubMed ID: 17574323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of cardiopulmonary resuscitation using intratracheal insufflation.
    Brochard L; Boussignac G; Adnot S; Bertrand C; Isabey D; Harf A
    Am J Respir Crit Care Med; 1996 Nov; 154(5):1323-9. PubMed ID: 8912743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential negative effects of epinephrine on carotid blood flow and ETCO2 during active compression-decompression CPR utilizing an impedance threshold device.
    Burnett AM; Segal N; Salzman JG; McKnite MS; Frascone RJ
    Resuscitation; 2012 Aug; 83(8):1021-4. PubMed ID: 22445865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturized mechanical chest compressor: a new option for cardiopulmonary resuscitation.
    Ristagno G; Castillo C; Tang W; Sun S; Bisera J; Weil MH
    Resuscitation; 2008 Feb; 76(2):191-7. PubMed ID: 17728044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; McKnite S; Aufderheide TP; Sigurdsson G; Pirrallo RG; Benditt D; Lurie KG
    Resuscitation; 2005 Mar; 64(3):363-72. PubMed ID: 15733767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain tissue oxygen pressure and cerebral metabolism in an animal model of cardiac arrest and cardiopulmonary resuscitation.
    Cavus E; Bein B; Dörges V; Stadlbauer KH; Wenzel V; Steinfath M; Hanss R; Scholz J
    Resuscitation; 2006 Oct; 71(1):97-106. PubMed ID: 16942830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immediate countershock versus cardiopulmonary resuscitation before countershock in a 5-minute swine model of ventricular fibrillation arrest.
    Niemann JT; Cruz B; Garner D; Lewis RJ
    Ann Emerg Med; 2000 Dec; 36(6):543-6. PubMed ID: 11097692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of active compression-decompression cardiopulmonary resuscitation with the inspiratory threshold valve in a young porcine model of cardiac arrest.
    Voelckel WG; Lurie KG; Sweeney M; McKnite S; Zielinski T; Lindstrom P; Peterson C; Wenzel V; Lindner KH
    Pediatr Res; 2002 Apr; 51(4):523-7. PubMed ID: 11919340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid induction of cerebral hypothermia is enhanced with active compression-decompression plus inspiratory impedance threshold device cardiopulmonary resusitation in a porcine model of cardiac arrest.
    Srinivasan V; Nadkarni VM; Yannopoulos D; Marino BS; Sigurdsson G; McKnite SH; Zook M; Benditt DG; Lurie KG
    J Am Coll Cardiol; 2006 Feb; 47(4):835-41. PubMed ID: 16487853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.