These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22465838)

  • 1. A stochastic model for the development of Bateson-Dobzhansky-Muller incompatibilities that incorporates protein interaction networks.
    Livingstone K; Olofsson P; Cochran G; Dagilis A; Macpherson K; Seitz KA
    Math Biosci; 2012 Jul; 238(1):49-53. PubMed ID: 22465838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward genome-wide identification of Bateson-Dobzhansky-Muller incompatibilities in yeast: a simulation study.
    Li C; Wang Z; Zhang J
    Genome Biol Evol; 2013; 5(7):1261-72. PubMed ID: 23742870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The probability of speciation on an interaction network with unequal substitution rates.
    Olofsson P; Livingstone K; Humphreys J; Steinman D
    Math Biosci; 2016 Aug; 278():1-4. PubMed ID: 27177943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolution of hybrid fitness during speciation.
    Dagilis AJ; Kirkpatrick M; Bolnick DI
    PLoS Genet; 2019 May; 15(5):e1008125. PubMed ID: 31059513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating incipient speciation in Arabidopsis lyrata from patterns of transmission ratio distortion.
    Leppälä J; Bokma F; Savolainen O
    Genetics; 2013 Jul; 194(3):697-708. PubMed ID: 23666938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic architecture and postzygotic reproductive isolation: evolution of Bateson-Dobzhansky-Muller incompatibilities in a polygenic model.
    Fierst JL; Hansen TF
    Evolution; 2010 Mar; 64(3):675-93. PubMed ID: 19817852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of mitonuclear incompatibilities in allopatric speciation.
    Burton RS
    Cell Mol Life Sci; 2022 Jan; 79(2):103. PubMed ID: 35091831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genome-wide analysis reveals no nuclear dobzhansky-muller pairs of determinants of speciation between S. cerevisiae and S. paradoxus, but suggests more complex incompatibilities.
    Kao KC; Schwartz K; Sherlock G
    PLoS Genet; 2010 Jul; 6(7):e1001038. PubMed ID: 20686707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiraling Complexity: A Test of the Snowball Effect in a Computational Model of RNA Folding.
    Kalirad A; Azevedo RBR
    Genetics; 2017 May; 206(1):377-388. PubMed ID: 28007889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of hybrid incompatibilities along a phylogeny.
    Wang RJ; Ané C; Payseur BA
    Evolution; 2013 Oct; 67(10):2905-22. PubMed ID: 24094342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Architecture Underlying Nascent Speciation-The Evolution of Eurasian Pigs under Domestication.
    Xie HB; Wang LG; Fan CY; Zhang LC; Adeola AC; Yin X; Zeng ZB; Wang LX; Zhang YP
    Mol Biol Evol; 2021 Aug; 38(9):3556-3566. PubMed ID: 33892509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The genetic architecture of hybrid incompatibilities and their effect on barriers to introgression in secondary contact.
    Lindtke D; Buerkle CA
    Evolution; 2015 Aug; 69(8):1987-2004. PubMed ID: 26174368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genetics of speciation: Insights from Fisher's geometric model.
    Fraïsse C; Gunnarsson PA; Roze D; Bierne N; Welch JJ
    Evolution; 2016 Jul; 70(7):1450-64. PubMed ID: 27252049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parental Population Range Expansion before Secondary Contact Promotes Heterosis.
    MacPherson A; Wang S; Yamaguchi R; Rieseberg LH; Otto SP
    Am Nat; 2022 Jul; 200(1):E1-E15. PubMed ID: 35737992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The limited contribution of reciprocal gene loss to increased speciation rates following whole-genome duplication.
    Muir CD; Hahn MW
    Am Nat; 2015 Jan; 185(1):70-86. PubMed ID: 25560554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunoglobulin genes, reproductive isolation and vertebrate speciation.
    Collins AM; Watson CT; Breden F
    Immunol Cell Biol; 2022 Aug; 100(7):497-506. PubMed ID: 35781330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple Biophysical Model Predicts Faster Accumulation of Hybrid Incompatibilities in Small Populations Under Stabilizing Selection.
    Khatri BS; Goldstein RA
    Genetics; 2015 Dec; 201(4):1525-37. PubMed ID: 26434721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive survey of condition-specific reproductive isolation reveals genetic incompatibility in yeast.
    Hou J; Friedrich A; Gounot JS; Schacherer J
    Nat Commun; 2015 May; 6():7214. PubMed ID: 26008139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteotoxicity caused by perturbed protein complexes underlies hybrid incompatibility in yeast.
    Swamy KBS; Lee HY; Ladra C; Liu CJ; Chao JC; Chen YY; Leu JY
    Nat Commun; 2022 Jul; 13(1):4394. PubMed ID: 35906261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In search of the Goldilocks zone for hybrid speciation.
    Blanckaert A; Bank C
    PLoS Genet; 2018 Sep; 14(9):e1007613. PubMed ID: 30192761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.