BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22465839)

  • 1. A kinetic model of troponin dissociation in relation to thin filament regulation in striated muscle.
    Sen AK; Swartz DR; Gawalapu RK
    Math Biosci; 2012 Jul; 238(1):32-7. PubMed ID: 22465839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myofibrillar troponin exists in three states and there is signal transduction along skeletal myofibrillar thin filaments.
    Swartz DR; Yang Z; Sen A; Tikunova SB; Davis JP
    J Mol Biol; 2006 Aug; 361(3):420-35. PubMed ID: 16857209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence resonance energy transfer between residues on troponin and tropomyosin in the reconstituted thin filament: modeling the troponin-tropomyosin complex.
    Kimura-Sakiyama C; Ueno Y; Wakabayashi K; Miki M
    J Mol Biol; 2008 Feb; 376(1):80-91. PubMed ID: 18155235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An interplay between protein disorder and structure confers the Ca2+ regulation of striated muscle.
    Hoffman RM; Blumenschein TM; Sykes BD
    J Mol Biol; 2006 Aug; 361(4):625-33. PubMed ID: 16876196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocrosslinking of benzophenone-labeled single cysteine troponin I mutants to other thin filament proteins.
    Luo Y; Wu JL; Li B; Langsetmo K; Gergely J; Tao T
    J Mol Biol; 2000 Feb; 296(3):899-910. PubMed ID: 10677290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin.
    Murakami K; Yumoto F; Ohki SY; Yasunaga T; Tanokura M; Wakabayashi T
    J Mol Biol; 2005 Sep; 352(1):178-201. PubMed ID: 16061251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences between cardiac and skeletal troponin interaction with the thin filament probed by troponin exchange in skeletal myofibrils.
    Yang Z; Yamazaki M; Shen QW; Swartz DR
    Biophys J; 2009 Jul; 97(1):183-94. PubMed ID: 19580756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A recombinant monocysteine mutant (Ser to Cys-155) of fast skeletal troponin T: identification by cross-linking of a domain involved in a physiologically relevant interaction with troponins C and I.
    Jha PK; Sarkar S
    Biochemistry; 1998 Sep; 37(35):12253-60. PubMed ID: 9724539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional FRET analysis to construct an atomic model of the actin-tropomyosin-troponin core domain complex on a muscle thin filament.
    Miki M; Makimura S; Sugahara Y; Yamada R; Bunya M; Saitoh T; Tobita H
    J Mol Biol; 2012 Jun; 420(1-2):40-55. PubMed ID: 22484177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of the interactions between troponin C (TnC) and troponin I (TnI) binding peptides: evidence for separate binding sites for the 'structural' N-terminus and the 'regulatory' C-terminus of TnI on TnC.
    Tripet B; De Crescenzo G; Grothe S; O'Connor-McCourt M; Hodges RS
    J Mol Recognit; 2003; 16(1):37-53. PubMed ID: 12557238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Troponin T and Ca2+ dependence of the distance between Cys48 and Cys133 of troponin I in the ternary troponin complex and reconstituted thin filaments.
    Luo Y; Wu JL; Gergely J; Tao T
    Biochemistry; 1997 Sep; 36(36):11027-35. PubMed ID: 9283095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Millisecond photo-cross-linking of protein components in vertebrate striated muscle thin filaments.
    Sutoh K; Matsuzaki F
    Biochemistry; 1980 Aug; 19(16):3878-82. PubMed ID: 6447509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of troponin C binding to the myofibrillar thin filament: extraction of troponin C is not random along the length of the thin filament.
    Swartz DR; Moss RL; Greaser ML
    Biophys J; 1997 Jul; 73(1):293-305. PubMed ID: 9199794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperativity and switching within the three-state model of muscle regulation.
    Maytum R; Lehrer SS; Geeves MA
    Biochemistry; 1999 Jan; 38(3):1102-10. PubMed ID: 9894007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modulatory role for the troponin T tail domain in thin filament regulation.
    Maytum R; Geeves MA; Lehrer SS
    J Biol Chem; 2002 Aug; 277(33):29774-80. PubMed ID: 12045197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes induced in troponin I by interaction with troponin T and actin/tropomyosin.
    Tao T; Gong BJ; Grabarek Z; Gergely J
    Biochim Biophys Acta; 1999 Jul; 1450(3):423-33. PubMed ID: 10395953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of deletion mutants of troponins I and T: COOH-terminal truncation of troponin T abolishes troponin I binding and reduces Ca2+ sensitivity of the reconstituted regulatory system.
    Jha PK; Leavis PC; Sarkar S
    Biochemistry; 1996 Dec; 35(51):16573-80. PubMed ID: 8987992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Troponin Revealed: Uncovering the Structure of the Thin Filament On-Off Switch in Striated Muscle.
    Tobacman LS
    Biophys J; 2021 Jan; 120(1):1-9. PubMed ID: 33221250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Troponin in both smooth and striated muscles of Ascidian Ciona intestinalis functions as a Ca2+-dependent accelerator of actin−myosin interaction.
    Ohshiro K; Obinata T; Dennisson JG; Ogasawara M; Sato N
    Biochemistry; 2010 Nov; 49(44):9563-71. PubMed ID: 20849123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.