BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22466074)

  • 1. Reverse transmission along the ossicular chain in gerbil.
    Dong W; Decraemer WF; Olson ES
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):447-59. PubMed ID: 22466074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ossicular motion related to middle ear transmission delay in gerbil.
    de La Rochefoucauld O; Kachroo P; Olson ES
    Hear Res; 2010 Dec; 270(1-2):158-72. PubMed ID: 20696229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forward and Reverse Middle Ear Transmission in Gerbil with a Normal or Spontaneously Healed Tympanic Membrane.
    Lin X; Meenderink SWF; Stomackin G; Jung TT; Martin GK; Dong W
    J Assoc Res Otolaryngol; 2021 Jun; 22(3):261-274. PubMed ID: 33591494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional vibration of the malleus and incus in the living gerbil.
    Decraemer WF; de La Rochefoucauld O; Funnell WR; Olson ES
    J Assoc Res Otolaryngol; 2014 Aug; 15(4):483-510. PubMed ID: 24691793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Middle ear forward and reverse transmission in gerbil.
    Dong W; Olson ES
    J Neurophysiol; 2006 May; 95(5):2951-61. PubMed ID: 16481455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound transmission along the ossicular chain in common wild-type laboratory mice.
    Dong W; Varavva P; Olson ES
    Hear Res; 2013 Jul; 301():27-34. PubMed ID: 23183032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D displacement of the middle ear ossicles in the quasi-static pressure regime using new X-ray stereoscopy technique.
    Salih WHM; Soons JAM; Dirckx JJJ
    Hear Res; 2016 Oct; 340():60-68. PubMed ID: 26723101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subharmonic distortion in ear canal pressure and intracochlear pressure and motion.
    Huang S; Dong W; Olson ES
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):461-71. PubMed ID: 22526734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse middle-ear forward and reverse acoustics.
    Motallebzadeh H; Puria S
    J Acoust Soc Am; 2021 Apr; 149(4):2711. PubMed ID: 33940924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forward and Reverse Waves: Modeling Distortion Products in the Intracochlear Fluid Pressure.
    Bowling T; Meaud J
    Biophys J; 2018 Feb; 114(3):747-757. PubMed ID: 29414719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method to measure sound transmission via the malleus-incus complex.
    Dobrev I; Ihrle S; Röösli C; Gerig R; Eiber A; Huber AM; Sim JH
    Hear Res; 2016 Oct; 340():89-98. PubMed ID: 26626362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones.
    Frear DL; Guan X; Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2018 Sep; 367():17-31. PubMed ID: 30015103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of ossicular vibrations in the middle ear.
    Schön F; Müller J
    Audiol Neurootol; 1999; 4(3-4):142-9. PubMed ID: 10187922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the 2f
    Wen H; Bowling T; Meaud J
    Hear Res; 2018 Aug; 365():127-140. PubMed ID: 29801982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal ossicular site for maximal vibration transmissions to coupled transducers.
    Chung J; Song WJ; Sim JH; Kim W; Oh SH
    Hear Res; 2013 Jul; 301():137-45. PubMed ID: 23337694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the flexible incudo-malleal joint to middle-ear sound transmission under static pressure loads.
    Warnholtz B; Schär M; Sackmann B; Lauxmann M; Chatzimichalis M; Prochazka L; Dobrev I; Huber AM; Sim JH
    Hear Res; 2021 Jul; 406():108272. PubMed ID: 34038827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.