These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 22466366)
1. SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Gudesblat GE; Schneider-Pizoń J; Betti C; Mayerhofer J; Vanhoutte I; van Dongen W; Boeren S; Zhiponova M; de Vries S; Jonak C; Russinova E Nat Cell Biol; 2012 Apr; 14(5):548-54. PubMed ID: 22466366 [TBL] [Abstract][Full Text] [Related]
2. Phosphorylation of Serine 186 of bHLH Transcription Factor SPEECHLESS Promotes Stomatal Development in Arabidopsis. Yang KZ; Jiang M; Wang M; Xue S; Zhu LL; Wang HZ; Zou JJ; Lee EK; Sack F; Le J Mol Plant; 2015 May; 8(5):783-95. PubMed ID: 25680231 [TBL] [Abstract][Full Text] [Related]
3. Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. Khan M; Rozhon W; Bigeard J; Pflieger D; Husar S; Pitzschke A; Teige M; Jonak C; Hirt H; Poppenberger B J Biol Chem; 2013 Mar; 288(11):7519-7527. PubMed ID: 23341468 [TBL] [Abstract][Full Text] [Related]
4. A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development. de Marcos A; Houbaert A; Triviño M; Delgado D; Martín-Trillo M; Russinova E; Fenoll C; Mena M Plant Physiol; 2017 Jun; 174(2):823-842. PubMed ID: 28507175 [TBL] [Abstract][Full Text] [Related]
5. Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development. Lau OS; Song Z; Zhou Z; Davies KA; Chang J; Yang X; Wang S; Lucyshyn D; Tay IHZ; Wigge PA; Bergmann DC Curr Biol; 2018 Apr; 28(8):1273-1280.e3. PubMed ID: 29628371 [TBL] [Abstract][Full Text] [Related]
6. YODA-HSP90 Module Regulates Phosphorylation-Dependent Inactivation of SPEECHLESS to Control Stomatal Development under Acute Heat Stress in Arabidopsis. Samakovli D; Tichá T; Vavrdová T; Ovečka M; Luptovčiak I; Zapletalová V; Kuchařová A; Křenek P; Krasylenko Y; Margaritopoulou T; Roka L; Milioni D; Komis G; Hatzopoulos P; Šamaj J Mol Plant; 2020 Apr; 13(4):612-633. PubMed ID: 31935463 [TBL] [Abstract][Full Text] [Related]
7. POLAR-guided signalling complex assembly and localization drive asymmetric cell division. Houbaert A; Zhang C; Tiwari M; Wang K; de Marcos Serrano A; Savatin DV; Urs MJ; Zhiponova MK; Gudesblat GE; Vanhoutte I; Eeckhout D; Boeren S; Karimi M; Betti C; Jacobs T; Fenoll C; Mena M; de Vries S; De Jaeger G; Russinova E Nature; 2018 Nov; 563(7732):574-578. PubMed ID: 30429609 [TBL] [Abstract][Full Text] [Related]
8. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Kim TW; Michniewicz M; Bergmann DC; Wang ZY Nature; 2012 Feb; 482(7385):419-22. PubMed ID: 22307275 [TBL] [Abstract][Full Text] [Related]
9. Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of Too Many Mouths. Wang M; Yang K; Le J J Integr Plant Biol; 2015 Mar; 57(3):247-55. PubMed ID: 25234048 [TBL] [Abstract][Full Text] [Related]
10. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Lampard GR; Macalister CA; Bergmann DC Science; 2008 Nov; 322(5904):1113-6. PubMed ID: 19008449 [TBL] [Abstract][Full Text] [Related]
11. Emerging roles of protein phosphorylation in regulation of stomatal development. Chen L J Plant Physiol; 2023 Jan; 280():153882. PubMed ID: 36493667 [TBL] [Abstract][Full Text] [Related]
12. Protein phosphatase 2A promotes stomatal development by stabilizing SPEECHLESS in Bian C; Guo X; Zhang Y; Wang L; Xu T; DeLong A; Dong J Proc Natl Acad Sci U S A; 2020 Jun; 117(23):13127-13137. PubMed ID: 32434921 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level. Jewaria PK; Hara T; Tanaka H; Kondo T; Betsuyaku S; Sawa S; Sakagami Y; Aimoto S; Kakimoto T Plant Cell Physiol; 2013 Aug; 54(8):1253-62. PubMed ID: 23686240 [TBL] [Abstract][Full Text] [Related]
15. Arabidopsis cryptochrome 1 promotes stomatal development through repression of AGB1 inhibition of SPEECHLESS DNA-binding activity. Cao X; Xu P; Liu Y; Yang G; Liu M; Chen L; Cheng Y; Xu P; Miao L; Mao Z; Wang W; Kou S; Guo T; Yang HQ J Integr Plant Biol; 2021 Nov; 63(11):1967-1981. PubMed ID: 34469075 [TBL] [Abstract][Full Text] [Related]
16. Structural and functional characterization of Arabidopsis GSK3-like kinase AtSK12. Youn JH; Kim TW; Kim EJ; Bu S; Kim SK; Wang ZY; Kim TW Mol Cells; 2013 Dec; 36(6):564-70. PubMed ID: 24292946 [TBL] [Abstract][Full Text] [Related]
18. IDD16 negatively regulates stomatal initiation via trans-repression of SPCH in Arabidopsis. Qi SL; Lin QF; Feng XJ; Han HL; Liu J; Zhang L; Wu S; Le J; Blumwald E; Hua XJ Plant Biotechnol J; 2019 Jul; 17(7):1446-1457. PubMed ID: 30623555 [TBL] [Abstract][Full Text] [Related]
19. HSP90 chaperones regulate stomatal differentiation under normal and heat stress conditions. Samakovli D; Tichá T; Šamaj J Plant Signal Behav; 2020 Sep; 15(9):1789817. PubMed ID: 32669038 [TBL] [Abstract][Full Text] [Related]
20. Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl. Fuentes S; Cañamero RC; Serna L Int J Dev Biol; 2012; 56(9):675-80. PubMed ID: 23124966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]