These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22466407)

  • 21. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity.
    Kroeger PE; Morimoto RI
    Mol Cell Biol; 1994 Nov; 14(11):7592-603. PubMed ID: 7935474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic protein-DNA architecture of a yeast heat shock promoter.
    Giardina C; Lis JT
    Mol Cell Biol; 1995 May; 15(5):2737-44. PubMed ID: 7739554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor.
    Bulman AL; Nelson HC
    Proteins; 2005 Mar; 58(4):826-35. PubMed ID: 15651035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Granok H; Elgin SC
    Mol Cell Biol; 1993 May; 13(5):2802-14. PubMed ID: 8474442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vectors for N- or C-terminal positioning of the yeast Gal4p DNA binding or activator domains.
    Millson SH; Truman AW; Piper PW
    Biotechniques; 2003 Jul; 35(1):60-4. PubMed ID: 12866406
    [No Abstract]   [Full Text] [Related]  

  • 28. Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation.
    Hashikawa N; Mizukami Y; Imazu H; Sakurai H
    J Biol Chem; 2006 Feb; 281(7):3936-42. PubMed ID: 16361698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The DNA-binding domain of yeast Hsf1 regulates both DNA-binding and transcriptional activities.
    Yamamoto A; Sakurai H
    Biochem Biophys Res Commun; 2006 Aug; 346(4):1324-9. PubMed ID: 16806072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering of the hydrophobic core of an alpha-helical coiled coil.
    Kiyokawa T; Kanaori K; Tajima K; Tanaka T
    Biopolymers; 2000; 55(5):407-14. PubMed ID: 11241216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between DNA-bound trimers of the yeast heat shock factor.
    Bonner JJ; Ballou C; Fackenthal DL
    Mol Cell Biol; 1994 Jan; 14(1):501-8. PubMed ID: 8264619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The nuclear actin-related protein Act3p/Arp4p of Saccharomyces cerevisiae is involved in transcription regulation of stress genes.
    Görzer I; Schüller C; Heidenreich E; Krupanska L; Kuchler K; Wintersberger U
    Mol Microbiol; 2003 Nov; 50(4):1155-71. PubMed ID: 14622406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat shock factor can activate transcription while bound to nucleosomal DNA in Saccharomyces cerevisiae.
    Pederson DS; Fidrych T
    Mol Cell Biol; 1994 Jan; 14(1):189-99. PubMed ID: 8264586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CK2-dependent inhibitory phosphorylation is relieved by Ppt1 phosphatase for the ethanol stress-specific activation of Hsf1 in Saccharomyces cerevisiae.
    Cho BR; Lee P; Hahn JS
    Mol Microbiol; 2014 Jul; 93(2):306-16. PubMed ID: 24894977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N- and C-terminal activation domains.
    Bulman AL; Hubl ST; Nelson HC
    J Biol Chem; 2001 Oct; 276(43):40254-62. PubMed ID: 11509572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain.
    Franzmann TM; Menhorn P; Walter S; Buchner J
    Mol Cell; 2008 Feb; 29(2):207-16. PubMed ID: 18243115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interfacial metal-binding site design.
    Matthews DJ
    Curr Opin Biotechnol; 1995 Aug; 6(4):419-24. PubMed ID: 7579652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA binding of a basic leucine-zipper protein with novel folding domain.
    Sato S; Makino K; Morii T
    Nucleic Acids Symp Ser; 2000; (44):13-4. PubMed ID: 12903245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.