These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22466488)

  • 1. Tissue attraction associated with 20-gauge, 23-gauge, and enhanced 25-gauge dual-pneumatic vitrectomy probes.
    Dugel PU; Zhou J; Abulon DJ; Buboltz DC
    Retina; 2012 Oct; 32(9):1761-6. PubMed ID: 22466488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.
    Dugel PU; Abulon DJ; Dimalanta R
    Retina; 2015 May; 35(5):915-20. PubMed ID: 25621945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitreoretinal traction created by conventional cutters during vitrectomy.
    Teixeira A; Chong LP; Matsuoka N; Arana L; Kerns R; Bhadri P; Humayun M
    Ophthalmology; 2010 Jul; 117(7):1387-92.e2. PubMed ID: 20176400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid dynamics in three 25-gauge vitrectomy systems: principles for use in vitreoretinal surgery.
    Magalhães O; Maia M; Maia A; Penha F; Dib E; Farah ME; Schor P
    Acta Ophthalmol; 2008 Mar; 86(2):156-9. PubMed ID: 18373797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 20-, 23-, and 25-gauge vitreous cutters: performance and characteristics evaluation.
    Hubschman JP; Gupta A; Bourla DH; Culjat M; Yu F; Schwartz SD
    Retina; 2008 Feb; 28(2):249-57. PubMed ID: 18301030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitreous dynamics: vitreous flow analysis in 20-, 23-, and 25-gauge cutters.
    Magalhaes O; Chong L; DeBoer C; Bhadri P; Kerns R; Barnes A; Fang S; Humayun M
    Retina; 2008 Feb; 28(2):236-41. PubMed ID: 18301028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing new vitreous cutter blade shapes: a fluid dynamics study.
    Rossi T; Querzoli G; Angelini G; Malvasi C; Iossa M; Placentino L; Ripandelli G
    Retina; 2014 Sep; 34(9):1896-904. PubMed ID: 24871998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AXIAL ROTATION VITRECTOMY: Back to the Future? the Fluidics of a Prototype Vitreous Cutter Probe.
    Rossi T; Querzoli G; Angelini G; Malvasi C; Rossi A; Morini M; Iossa M; Ripandelli G
    Retina; 2016 Jul; 36(7):1252-9. PubMed ID: 26655617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid dynamics of vitrectomy probes.
    Rossi T; Querzoli G; Angelini G; Malvasi C; Iossa M; Placentino L; Ripandelli G
    Retina; 2014 Mar; 34(3):558-67. PubMed ID: 24013257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the fluidic properties of a syringe-based portable vitrectomy device.
    Pitcher JD; McCannel CA
    Retina; 2011 Oct; 31(9):1759-64. PubMed ID: 21659944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Port geometry and its influence on vitrectomy.
    DeBoer C; Fang S; Lima LH; McCormick M; Bhadri P; Kerns R; Humayun M
    Retina; 2008 Oct; 28(8):1061-7. PubMed ID: 18779711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental protocol of the model to quantify traction applied to the retina by vitreous cutters.
    Teixeira A; Chong L; Matsuoka N; Arana L; Lue JC; McCormick M; Kerns R; Bhadri P; Humayun M
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):4181-6. PubMed ID: 20181834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instantaneous flow rate of vitreous cutter probes.
    Rossi T; Querzoli G; Angelini G; Rossi A; Malvasi C; Iossa M; Ripandelli G
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):8289-94. PubMed ID: 25414180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluidics comparison between dual pneumatic and spring return high-speed vitrectomy systems.
    Brant Fernandes RA; Diniz B; Falabella P; Ribeiro R; Teixeira AG; Magalhães O; Moraes N; Maia A; Farah ME; Maia M; Humayun MS
    Ophthalmic Surg Lasers Imaging Retina; 2015 Jan; 46(1):68-72. PubMed ID: 25559512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel method to quantify traction in a vitrectomy procedure.
    Teixeira A; Chong L; Matsuoka N; Rowley A; Lue JC; McCormick M; Kerns R; Humayun M
    Br J Ophthalmol; 2010 Sep; 94(9):1226-9. PubMed ID: 20538657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance Comparison of High-Speed Dual-Pneumatic Vitrectomy Cutters during Simulated Vitrectomy with Balanced Salt Solution.
    Abulon DJ; Buboltz DC
    Transl Vis Sci Technol; 2015 Feb; 4(1):6. PubMed ID: 25649216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cutting phases on flow rate in 20-, 23-, and 25-gauge vitreous cutters.
    Hubschman JP; Bourges JL; Tsui I; Reddy S; Yu F; Schwartz SD
    Retina; 2009 Oct; 29(9):1289-93. PubMed ID: 19730161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.
    Zehetner C; Moelgg M; Bechrakis E; Linhart C; Bechrakis NE
    Retina; 2018 Dec; 38(12):2309-2316. PubMed ID: 29016453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery.
    Oshima Y; Wakabayashi T; Sato T; Ohji M; Tano Y
    Ophthalmology; 2010 Jan; 117(1):93-102.e2. PubMed ID: 19880185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid Dynamic Assessment of Hypersonic and Guillotine Vitrectomy Probes in Viscoelastic Vitreous Substitutes.
    Stocchino A; Nepita I; Repetto R; Dodero A; Castellano M; Ferrara M; Romano MR
    Transl Vis Sci Technol; 2020 May; 9(6):9. PubMed ID: 32821506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.