BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22466573)

  • 1. Contribution of reductase activity to quinone toxicity in three kinds of hepatic cells.
    Ishihara Y; Tsuji K; Ishii S; Kashiwagi K; Shimamoto N
    Biol Pharm Bull; 2012; 35(4):634-8. PubMed ID: 22466573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition.
    Ishihara Y; Shiba D; Shimamoto N
    Toxicol Appl Pharmacol; 2006 Jul; 214(2):109-17. PubMed ID: 16430935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes.
    Gant TW; Rao DN; Mason RP; Cohen GM
    Chem Biol Interact; 1988; 65(2):157-73. PubMed ID: 2835188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diethyldithiocarbamate (DEDC) enhances quinone mediated oxidative stress cytotoxicity in isolated hepatocytes by forming toxic quinone conjugates.
    Lauriault VV; Silva JM; O'Brien PJ
    Drug Metabol Drug Interact; 1989; 7(1):1-15. PubMed ID: 2561273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in hepatocyte cytoskeleton caused by redox cycling and alkylating quinones.
    Thor H; Mirabelli F; Salis A; Cohen GM; Bellomo G; Orrenius S
    Arch Biochem Biophys; 1988 Nov; 266(2):397-407. PubMed ID: 3190234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of redox-cycling and arylating quinones on trans-plasma membrane electron transport.
    Tan AS; Berridge MV
    Biofactors; 2008; 34(3):183-90. PubMed ID: 19734119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relative importance of oxidative stress versus arylation in the mechanism of quinone-induced cytotoxicity to platelets.
    Seung SA; Lee JY; Lee MY; Park JS; Chung JH
    Chem Biol Interact; 1998 May; 113(2):133-44. PubMed ID: 9717514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of arylating quinone toxicity involving Michael adduct formation and induction of endoplasmic reticulum stress.
    Wang X; Thomas B; Sachdeva R; Arterburn L; Frye L; Hatcher PG; Cornwell DG; Ma J
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3604-9. PubMed ID: 16505371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crucial role of cytochrome P450 in hepatotoxicity induced by 2,3-dimethoxy-1,4-naphthoquinone in rats.
    Ishihara Y; Ishii S; Sakai Y; Yamamura N; Onishi Y; Shimamoto N
    J Appl Toxicol; 2011 Mar; 31(2):173-8. PubMed ID: 20803752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quinoneimines as substrates for quinone reductase (NAD(P)H: (quinone-acceptor)oxidoreductase) and the effect of dicumarol on their cytotoxicity.
    Powis G; See KL; Santone KS; Melder DC; Hodnett EM
    Biochem Pharmacol; 1987 Aug; 36(15):2473-9. PubMed ID: 2440444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of redox cycling versus arylation in quinone-induced mitochondrial dysfunction: a mechanistic approach in classifying reactive toxicants.
    Henry TR; Wallace KB
    SAR QSAR Environ Res; 1995; 4(2-3):97-108. PubMed ID: 8765905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autoxidation of extracellular hydroquinones is a causative event for the cytotoxicity of menadione and DMNQ in A549-S cells.
    Watanabe N; Forman HJ
    Arch Biochem Biophys; 2003 Mar; 411(1):145-57. PubMed ID: 12590933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of quinone cytotoxicity.
    O'Brien PJ
    Chem Biol Interact; 1991; 80(1):1-41. PubMed ID: 1913977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interconversion of NAD(H) to NADP(H). A cellular response to quinone-induced oxidative stress in isolated hepatocytes.
    Stubberfield CR; Cohen GM
    Biochem Pharmacol; 1989 Aug; 38(16):2631-7. PubMed ID: 2764986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quinone toxicity in hepatocytes without oxidative stress.
    Rossi L; Moore GA; Orrenius S; O'Brien PJ
    Arch Biochem Biophys; 1986 Nov; 251(1):25-35. PubMed ID: 3789732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated quinone-dependent redox cycling via plasma membrane electron transport: A sensitive cellular assay for NQO1.
    Tan AS; Berridge MV
    Free Radic Biol Med; 2010 Feb; 48(3):421-9. PubMed ID: 19932748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of toxicity of naphthoquinones to isolated hepatocytes.
    Miller MG; Rodgers A; Cohen GM
    Biochem Pharmacol; 1986 Apr; 35(7):1177-84. PubMed ID: 2421729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxicity of menadione and related quinones in freshly isolated rat hepatocytes: effects on thiol homeostasis and energy charge.
    Toxopeus C; van Holsteijn I; Thuring JW; Blaauboer BJ; Noordhoek J
    Arch Toxicol; 1993; 67(10):674-9. PubMed ID: 8135657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyridine nucleotide changes in hepatocytes exposed to quinones.
    Cohen GM; Stubberfield CR
    Free Radic Res Commun; 1990; 8(4-6):355-63. PubMed ID: 2354811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NQO1 and CYP450 reductase decrease the systemic exposure of rifampicin-quinone and mediate its redox cycle in rats.
    Shi F; Li X; Pan H; Ding L
    J Pharm Biomed Anal; 2017 Jan; 132():17-23. PubMed ID: 27693756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.