These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22466588)

  • 21. Enhancement of sludge granulation in hydrolytic acidogenesis by denitrification.
    Li Y; Zhang Y; Zhao Z; Sun S; Quan X; Zhao H
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3313-20. PubMed ID: 26637420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Denitrification of highly alkaline nitrate waste using adapted sludge.
    Dhamole PB; Nair RR; D'Souza SF; Lele SS
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):433-40. PubMed ID: 18427735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of operational conditions on the hydrodynamic characteristics of the sludge bed in UASB reactors.
    Leitão RC; Santaellla ST; van Haandel AC; Zeeman G; Lettinga G
    Water Sci Technol; 2011; 64(9):1935-41. PubMed ID: 22020490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of pH on nitrite accumulation during wastewater denitrification.
    Cao X; Qian D; Meng X
    Environ Technol; 2013; 34(1-4):45-51. PubMed ID: 23530314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Post-treatment of UASB effluent in an expanded granular sludge bed reactor type using flocculent sludge.
    Kato MT; Florencio L; Arantes RF
    Water Sci Technol; 2003; 48(6):279-84. PubMed ID: 14640229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the liquid upflow velocity on thermophilic sulphate reduction in acidifying granular sludge reactors.
    Lens PN; Korthout D; van Lier JB; Hulshoff Pol LW; Lettinga G
    Environ Technol; 2001 Feb; 22(2):183-93. PubMed ID: 11349377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal efficiency and methanogenic activity profiles in a pilot-scale UASB reactor treating settled sewage at moderate temperatures.
    Seghezzo L; Guerra RG; González SM; Trupiano AP; Figueroa ME; Cuevas CM; Zeeman G; Lettinga G
    Water Sci Technol; 2002; 45(10):243-8. PubMed ID: 12188552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient COD removal and nitrification in an upflow microaerobic sludge blanket reactor for domestic wastewater.
    Zheng S; Cui C
    Biotechnol Lett; 2012 Mar; 34(3):471-4. PubMed ID: 22105554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Simultaneous removal of sulfide and nitrite by anaerobic bioprocess].
    Cai J; Zheng P
    Sheng Wu Gong Cheng Xue Bao; 2009 Nov; 25(11):1684-9. PubMed ID: 20222468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A control strategy for promoting the stability of denitrifying granular sludge in upflow sludge blankets.
    Wang F; Jin X; Yang S; Liu Y; Chen X
    Environ Technol; 2014; 35(1-4):52-9. PubMed ID: 24600840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge.
    Cassidy DP; Belia E
    Water Res; 2005 Nov; 39(19):4817-23. PubMed ID: 16278003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor.
    Eiroa M; Kennes C; Veiga MC
    Water Res; 2004 Sep; 38(16):3495-502. PubMed ID: 15325175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sustainable bioreduction of toxic levels of chromate in a denitrifying granular sludge reactor.
    Kiran Kumar Reddy G; Nancharaiah YV
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1969-1979. PubMed ID: 29105040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater.
    Ni BJ; Xie WM; Liu SG; Yu HQ; Wang YZ; Wang G; Dai XL
    Water Res; 2009 Feb; 43(3):751-61. PubMed ID: 19059624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge.
    Yilmaz G; Lemaire R; Keller J; Yuan Z
    Biotechnol Bioeng; 2008 Jun; 100(3):529-41. PubMed ID: 18098318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.
    Kishida N; Kim J; Tsuneda S; Sudo R
    Water Res; 2006 Jul; 40(12):2303-10. PubMed ID: 16766009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Achieving rapid thiosulfate-driven denitrification (TDD) in a granular sludge system.
    Qian J; Bai L; Zhang M; Chen L; Yan X; Sun R; Zhang M; Chen GH; Wu D
    Water Res; 2021 Feb; 190():116716. PubMed ID: 33290906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of denitrifying granular sludge with and without the addition of external carbon source.
    Lew B; Stief P; Beliavski M; Ashkenazi A; Svitlica O; Khan A; Tarre S; de Beer D; Green M
    Bioresour Technol; 2012 Nov; 124():413-20. PubMed ID: 23010209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Start-up of a High Performance Nitrosation Reactor Through Continuous Growth of Aerobic Granular Sludge].
    Gao JJ; Qian FY; Wang JF; Chen X; Shen YL; Zhang ZY; Yan YT
    Huan Jing Ke Xue; 2017 Sep; 38(9):3787-3792. PubMed ID: 29965260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Denitrification in USB reactor with granulated biomass.
    Pagácová P; Galbová K; Drtil M; Jonatová I
    Bioresour Technol; 2010 Jan; 101(1):150-6. PubMed ID: 19716692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.