BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 22466598)

  • 1. Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae.
    Corso CR; Almeida EJ; Santos GC; Morão LG; Fabris GS; Mitter EK
    Water Sci Technol; 2012; 65(8):1490-5. PubMed ID: 22466598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of dyes in textile effluents by Aspergillus oryzae.
    Corso CR; Maganha de Almeida AC
    Microb Ecol; 2009 Feb; 57(2):384-90. PubMed ID: 18989608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus.
    Almeida EJ; Corso CR
    Chemosphere; 2014 Oct; 112():317-22. PubMed ID: 25048922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decolourisation of azo dye, Acid Red-18 by Phanerochaete chrysosporium.
    Vasudevan N; Kanimozhi R
    J Environ Sci Eng; 2011 Jul; 53(3):349-54. PubMed ID: 23029937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment.
    Gavazza S; Guzman JJ; Angenent LT
    Biodegradation; 2015 Apr; 26(2):151-60. PubMed ID: 25750156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads.
    Enayatzamir K; Alikhani HA; Yakhchali B; Tabandeh F; Rodríguez-Couto S
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):145-53. PubMed ID: 19259719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential use of low-cost lignocellulosic waste for the removal of direct violet 51 from aqueous solution: equilibrium and breakthrough studies.
    Sadaf S; Bhatti HN; Nausheen S; Noreen S
    Arch Environ Contam Toxicol; 2014 May; 66(4):557-71. PubMed ID: 24468968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive biosorption of Acid Blue 25 and Acid Red 337 onto unmodified and CDAB-modified biomass of Aspergillus oryzae.
    Yang Y; Jin D; Wang G; Wang S; Jia X; Zhao Y
    Bioresour Technol; 2011 Aug; 102(16):7429-36. PubMed ID: 21624828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved method for removal of azo dye orange II from textile effluent using albumin as sorbent.
    Ohashi T; Jara AM; Batista AC; Franco LO; Barbosa Lima MA; Benachour M; Alves da Silva CA; Campos-Takaki GM
    Molecules; 2012 Nov; 17(12):14219-29. PubMed ID: 23201641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli.
    Cerboneschi M; Corsi M; Bianchini R; Bonanni M; Tegli S
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8235-45. PubMed ID: 26062529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.
    Sirianuntapiboon S; Sadahiro O; Salee P
    J Environ Manage; 2007 Oct; 85(1):162-70. PubMed ID: 17046148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes.
    Saggioro EM; Oliveira AS; Pavesi T; Maia CG; Ferreira LF; Moreira JC
    Molecules; 2011 Dec; 16(12):10370-86. PubMed ID: 22169940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye.
    Akar T; Tosun I; Kaynak Z; Kavas E; Incirkus G; Akar ST
    J Hazard Mater; 2009 Nov; 171(1-3):865-71. PubMed ID: 19631464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental assessment of the degradation potential of mushroom fruit bodies of Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. towards synthetic azo dyes and contaminating effluents collected from textile industries in Karnataka, India.
    Skariyachan S; Prasanna A; Manjunath SP; Karanth SS; Nazre A
    Environ Monit Assess; 2016 Feb; 188(2):121. PubMed ID: 26818015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay.
    Verma Y
    Toxicol Ind Health; 2008 Aug; 24(7):491-500. PubMed ID: 19028775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L.
    Aksakal O; Ucun H
    J Hazard Mater; 2010 Sep; 181(1-3):666-72. PubMed ID: 20541317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption of simulated dyed effluents by inactivated fungal biomasses.
    Prigione V; Varese GC; Casieri L; Marchisio VF
    Bioresour Technol; 2008 Jun; 99(9):3559-67. PubMed ID: 17888654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of bioremediation potential of adapted and non-adapted fungi on azo dye containing textile effluent.
    Rajendran R; Karthik Sundaram S; Prabhavathi P; Sridevi BV; Gopi V
    Pak J Biol Sci; 2011 Jun; 14(11):610-8. PubMed ID: 22235501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for dye extraction using an aqueous two-phase system: Effect of co-occurrence of contaminants in textile industry wastewater.
    Borges GA; Silva LP; Penido JA; de Lemos LR; Mageste AB; Rodrigues GD
    J Environ Manage; 2016 Dec; 183():196-203. PubMed ID: 27591846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of anionic azo dye from aqueous solution via an adsorption-photosensitized regeneration process on a TiO2 surface.
    Bao N; Li Y; Yu XH; Niu JJ; Wu GL; Xu XH
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):897-906. PubMed ID: 22544602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.