These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22466715)

  • 1. Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation.
    Berglund SP; Rettie AJ; Hoang S; Mullins CB
    Phys Chem Chem Phys; 2012 May; 14(19):7065-75. PubMed ID: 22466715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport.
    Seabold JA; Zhu K; Neale NR
    Phys Chem Chem Phys; 2014 Jan; 16(3):1121-31. PubMed ID: 24287501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serial hole transfer layers for a BiVO
    Li L; Li J; Bai J; Zeng Q; Xia L; Zhang Y; Chen S; Xu Q; Zhou B
    Nanoscale; 2018 Oct; 10(38):18378-18386. PubMed ID: 30256370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BiVO
    Zheng L; Wang M; Li Y; Ma F; Li J; Jiang W; Liu M; Cheng H; Wang Z; Zheng Z; Wang P; Liu Y; Dai Y; Huang B
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Photoelectrochemical Water Splitting with Er- and W-Codoped Bismuth Vanadate with WO
    Prasad U; Prakash J; Gupta SK; Zuniga J; Mao Y; Azeredo B; Kannan ANM
    ACS Appl Mater Interfaces; 2019 May; 11(21):19029-19039. PubMed ID: 31062583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes.
    Choi SK; Choi W; Park H
    Phys Chem Chem Phys; 2013 May; 15(17):6499-507. PubMed ID: 23529529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO
    Rohloff M; Anke B; Kasian O; Zhang S; Lerch M; Scheu C; Fischer A
    ACS Appl Mater Interfaces; 2019 May; 11(18):16430-16442. PubMed ID: 31017393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photocurrent density for photoelectrochemical catalyzing water oxidation using novel W-doped BiVO
    Pai H; Kuo TR; Chung RJ; Kubendhiran S; Yougbaré S; Lin LY
    J Colloid Interface Sci; 2022 Oct; 624():515-526. PubMed ID: 35679639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes.
    Park Y; Kang D; Choi KS
    Phys Chem Chem Phys; 2014 Jan; 16(3):1238-46. PubMed ID: 24296682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Cheng BY; Yang JS; Cho HW; Wu JJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20032-9. PubMed ID: 27454929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells.
    Qiu Y; Liu W; Chen W; Chen W; Zhou G; Hsu PC; Zhang R; Liang Z; Fan S; Zhang Y; Cui Y
    Sci Adv; 2016 Jun; 2(6):e1501764. PubMed ID: 27386565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-Standing Electrospun W-Doped BiVO
    Yuan X; Sun X; Zhou H; Zeng S; Liu B; Li X; Liu D
    Front Chem; 2020; 8():311. PubMed ID: 32391331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mo-doped BiVO4 photoanodes synthesized by reactive sputtering.
    Chen L; Toma FM; Cooper JK; Lyon A; Lin Y; Sharp ID; Ager JW
    ChemSusChem; 2015 Mar; 8(6):1066-71. PubMed ID: 25705871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BiVO4 thin film photoanodes grown by chemical vapor deposition.
    Alarcón-Lladó E; Chen L; Hettick M; Mashouf N; Lin Y; Javey A; Ager JW
    Phys Chem Chem Phys; 2014 Jan; 16(4):1651-7. PubMed ID: 24322301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of a BiVO
    Xia L; Li J; Bai J; Li L; Zeng Q; Xu Q; Zhou B
    Nanoscale; 2018 Feb; 10(6):2848-2855. PubMed ID: 29362762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospinning Preparation of Nanostructured g-C
    Wang Y; Sun J; Li J; Zhao X
    Langmuir; 2017 May; 33(19):4694-4701. PubMed ID: 28434233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide.
    Rettie AJ; Lee HC; Marshall LG; Lin JF; Capan C; Lindemuth J; McCloy JS; Zhou J; Bard AJ; Mullins CB
    J Am Chem Soc; 2013 Jul; 135(30):11389-96. PubMed ID: 23869474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green fabrication of nanoporous BiVO
    Okunaka S; Hitomi Y; Tokudome H
    RSC Adv; 2018 Sep; 8(55):31575-31580. PubMed ID: 35548238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Source Bismuth (Transition Metal) Polyoxovanadate Precursors for the Scalable Synthesis of Doped BiVO
    Lu H; Andrei V; Jenkinson KJ; Regoutz A; Li N; Creissen CE; Wheatley AEH; Hao H; Reisner E; Wright DS; Pike SD
    Adv Mater; 2018 Nov; 30(46):e1804033. PubMed ID: 30285284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.