These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22466739)

  • 1. Effect of solvent type on the nanoparticle formation of atorvastatin calcium by the supercritical antisolvent process.
    Kim MS; Song HS; Park HJ; Hwang SJ
    Chem Pharm Bull (Tokyo); 2012; 60(4):543-7. PubMed ID: 22466739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process.
    Kim JS; Kim MS; Park HJ; Jin SJ; Lee S; Hwang SJ
    Int J Pharm; 2008 Jul; 359(1-2):211-9. PubMed ID: 18501538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.
    Kim MS; Jin SJ; Kim JS; Park HJ; Song HS; Neubert RH; Hwang SJ
    Eur J Pharm Biopharm; 2008 Jun; 69(2):454-65. PubMed ID: 18359211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation.
    Vaculikova E; Grunwaldova V; Kral V; Dohnal J; Jampilek J
    Molecules; 2012 Nov; 17(11):13221-34. PubMed ID: 23132139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micronization of atorvastatin calcium by antisolvent precipitation process.
    Zhang HX; Wang JX; Zhang ZB; Le Y; Shen ZG; Chen JF
    Int J Pharm; 2009 Jun; 374(1-2):106-13. PubMed ID: 19446766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.
    Djerafi R; Swanepoel A; Crampon C; Kalombo L; Labuschagne P; Badens E; Masmoudi Y
    Eur J Pharm Sci; 2017 May; 102():161-171. PubMed ID: 28302396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rifampicin microparticles production by supercritical antisolvent precipitation.
    Reverchon E; De Marco I; Della Porta G
    Int J Pharm; 2002 Aug; 243(1-2):83-91. PubMed ID: 12176297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of monodisperse pharmaceutical colloidal spheres of atorvastatin calcium via self-assembly.
    Zhang HX; Zhao H; Wang JX; Chen JF; Lu YF; Yun J
    Small; 2009 Aug; 5(16):1846-9. PubMed ID: 19415652
    [No Abstract]   [Full Text] [Related]  

  • 11. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
    Esfandiari N; Ghoreishi SM
    AAPS PharmSciTech; 2015 Dec; 16(6):1263-9. PubMed ID: 25771736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.
    Abuzar SM; Hyun SM; Kim JH; Park HJ; Kim MS; Park JS; Hwang SJ
    Int J Pharm; 2018 Mar; 538(1-2):1-13. PubMed ID: 29278733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and physicochemical properties of vinblastine microparticles by supercritical antisolvent process.
    Zhang X; Zhao X; Zu Y; Chen X; Lu Q; Ma Y; Yang L
    Int J Mol Sci; 2012 Oct; 13(10):12598-607. PubMed ID: 23202916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent.
    Muhrer G; Mazzotti M
    Biotechnol Prog; 2003; 19(2):549-56. PubMed ID: 12675600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique.
    Zu Y; Wu W; Zhao X; Li Y; Wang W; Zhong C; Zhang Y; Zhao X
    Int J Pharm; 2014 Aug; 471(1-2):366-76. PubMed ID: 24882039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process.
    Yang L; Sun Z; Zu Y; Zhao C; Sun X; Zhang Z; Zhang L
    Food Chem; 2012 May; 132(1):319-25. PubMed ID: 26434296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Definition of a solvent system for spherical crystallization of salbutamol sulfate by quasi-emulsion solvent diffusion (QESD) method.
    Nocent M; Bertocchi L; Espitalier F; Baron M; Couarraze G
    J Pharm Sci; 2001 Oct; 90(10):1620-7. PubMed ID: 11745720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation.
    Legrand P; Lesieur S; Bochot A; Gref R; Raatjes W; Barratt G; Vauthier C
    Int J Pharm; 2007 Nov; 344(1-2):33-43. PubMed ID: 17616282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oral absorption of atorvastatin solid dispersion based on cellulose or pyrrolidone derivative polymers.
    Kim MS; Kim JS; Cho W; Park HJ; Hwang SJ
    Int J Biol Macromol; 2013 Aug; 59():138-42. PubMed ID: 23567288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of cefpodoxime proxetil fine particles using supercritical fluids.
    Chu J; Li G; Row KH; Kim H; Lee YW
    Int J Pharm; 2009 Mar; 369(1-2):85-91. PubMed ID: 19041383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.