These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 22467177)
1. Theoretical investigation of biomass productivities achievable in solar rectangular photobioreactors for the cyanobacterium Arthrospira platensis. Pruvost J; Cornet JF; Goetz V; Legrand J Biotechnol Prog; 2012; 28(3):699-714. PubMed ID: 22467177 [TBL] [Abstract][Full Text] [Related]
2. Investigation and modeling of biomass decay rate in the dark and its potential influence on net productivity of solar photobioreactors for microalga Chlamydomonas reinhardtii and cyanobacterium Arthrospira platensis. Le Borgne F; Pruvost J Bioresour Technol; 2013 Jun; 138():271-6. PubMed ID: 23619140 [TBL] [Abstract][Full Text] [Related]
3. Dilution of solar radiation through "culture" lamination in photobioreactor rows facing south-north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Carlozzi P Biotechnol Bioeng; 2003 Feb; 81(3):305-15. PubMed ID: 12474253 [TBL] [Abstract][Full Text] [Related]
4. A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. Cornet JF; Dussap CG Biotechnol Prog; 2009; 25(2):424-35. PubMed ID: 19340890 [TBL] [Abstract][Full Text] [Related]
5. Spectral kinetic modeling and long-term behavior assessment of Arthrospira platensis growth in photobioreactor under red (620 nm) light illumination. Farges B; Laroche C; Cornet JF; Dussap CG Biotechnol Prog; 2009; 25(1):151-62. PubMed ID: 19224572 [TBL] [Abstract][Full Text] [Related]
6. Hydrodynamic alterations during cyanobacteria (Arthrospira platensis) growth from low to high biomass concentration inside tubular photobioreactors. Carlozzi P; Ena A; Carnevale S Biotechnol Prog; 2005; 21(2):416-22. PubMed ID: 15801780 [TBL] [Abstract][Full Text] [Related]
7. Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Hall DO; Fernández FG; Guerrero EC; Rao KK; Grima EM Biotechnol Bioeng; 2003 Apr; 82(1):62-73. PubMed ID: 12569625 [TBL] [Abstract][Full Text] [Related]
8. Kinetic modeling of the photosynthetic growth of Chlamydomonas reinhardtii in a photobioreactor. Takache H; Pruvost J; Cornet JF Biotechnol Prog; 2012; 28(3):681-92. PubMed ID: 22467331 [TBL] [Abstract][Full Text] [Related]
9. Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors. Zemke PE; Sommerfeld MR; Hu Q Appl Microbiol Biotechnol; 2013 Jun; 97(12):5645-55. PubMed ID: 23653122 [TBL] [Abstract][Full Text] [Related]
10. CO₂ from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source. Matsudo MC; Bezerra RP; Converti A; Sato S; Carvalho JC Biotechnol Prog; 2011; 27(3):650-6. PubMed ID: 21448973 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. López MC; Sánchez Edel R; López JL; Fernández FG; Sevilla JM; Rivas J; Guerrero MG; Grima EM J Biotechnol; 2006 May; 123(3):329-42. PubMed ID: 16406158 [TBL] [Abstract][Full Text] [Related]
12. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Pruvost J; Van Vooren G; Le Gouic B; Couzinet-Mossion A; Legrand J Bioresour Technol; 2011 Jan; 102(1):150-8. PubMed ID: 20675127 [TBL] [Abstract][Full Text] [Related]
14. Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Takache H; Christophe G; Cornet JF; Pruvost J Biotechnol Prog; 2010; 26(2):431-40. PubMed ID: 19953604 [TBL] [Abstract][Full Text] [Related]
15. Comparison of two different pneumatically mixed column photobioreactors for the cultivation of Artrospira platensis (Spirulina platensis). Oncel S; Sukan FV Bioresour Technol; 2008 Jul; 99(11):4755-60. PubMed ID: 17981030 [TBL] [Abstract][Full Text] [Related]
16. An integrated solar and artificial light system for internal illumination of photobioreactors. Ogbonna JC; Soejima T; Tanaka H J Biotechnol; 1999 Apr; 70(1-3):289-97. PubMed ID: 11536908 [TBL] [Abstract][Full Text] [Related]
17. Bicarbonate-based Integrated Carbon Capture and Algae Production System with alkalihalophilic cyanobacterium. Chi Z; Xie Y; Elloy F; Zheng Y; Hu Y; Chen S Bioresour Technol; 2013 Apr; 133():513-21. PubMed ID: 23455223 [TBL] [Abstract][Full Text] [Related]
18. Improving Spirulina platensis biomass yield using a fed-batch process. Costa JA; Colla LM; Duarte Filho PF Bioresour Technol; 2004 May; 92(3):237-41. PubMed ID: 14766156 [TBL] [Abstract][Full Text] [Related]
19. Influence of pH, temperature, and urea molar flowrate on Arthrospira platensis fed-batch cultivation: a kinetic and thermodynamic approach. Sánchez-Luna LD; Bezerra RP; Matsudo MC; Sato S; Converti A; de Carvalho JC Biotechnol Bioeng; 2007 Mar; 96(4):702-11. PubMed ID: 16988991 [TBL] [Abstract][Full Text] [Related]
20. Minimization of carbon losses in pilot-scale outdoor photobioreactors by model-based predictive control. García Sánchez JL; Berenguel M; Rodríguez F; Fernández Sevilla JM; Brindley Alias C; Acién Fernández FG Biotechnol Bioeng; 2003 Dec; 84(5):533-43. PubMed ID: 14574687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]