These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 22467310)
1. Increases in intracellular sodium activate transcription and gene expression via the salt-inducible kinase 1 network in an atrial myocyte cell line. Popov S; Venetsanou K; Chedrese PJ; Pinto V; Takemori H; Franco-Cereceda A; Eriksson P; Mochizuki N; Soares-da-Silva P; Bertorello AM Am J Physiol Heart Circ Physiol; 2012 Jul; 303(1):H57-65. PubMed ID: 22467310 [TBL] [Abstract][Full Text] [Related]
2. Role of salt-inducible kinase 1 in the activation of MEF2-dependent transcription by BDNF. Finsterwald C; Carrard A; Martin JL PLoS One; 2013; 8(1):e54545. PubMed ID: 23349925 [TBL] [Abstract][Full Text] [Related]
3. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Nakamura TY; Iwata Y; Arai Y; Komamura K; Wakabayashi S Circ Res; 2008 Oct; 103(8):891-9. PubMed ID: 18776042 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of HDAC5 by SIK1 in AICAR-treated C2C12 myoblasts. Takemori H; Katoh Hashimoto Y; Nakae J; Olson EN; Okamoto M Endocr J; 2009; 56(1):121-30. PubMed ID: 18946175 [TBL] [Abstract][Full Text] [Related]
5. CaM kinase IIdeltaC phosphorylation of 14-3-3beta in vascular smooth muscle cells: activation of class II HDAC repression. Ellis JJ; Valencia TG; Zeng H; Roberts LD; Deaton RA; Grant SR Mol Cell Biochem; 2003 Jan; 242(1-2):153-61. PubMed ID: 12619878 [TBL] [Abstract][Full Text] [Related]
6. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Berdeaux R; Goebel N; Banaszynski L; Takemori H; Wandless T; Shelton GD; Montminy M Nat Med; 2007 May; 13(5):597-603. PubMed ID: 17468767 [TBL] [Abstract][Full Text] [Related]
7. Cooperative interaction between the basic helix-loop-helix transcription factor dHAND and myocyte enhancer factor 2C regulates myocardial gene expression. Zang MX; Li Y; Wang H; Wang JB; Jia HT J Biol Chem; 2004 Dec; 279(52):54258-63. PubMed ID: 15485823 [TBL] [Abstract][Full Text] [Related]
9. Angiotensin II induces myocyte enhancer factor 2- and calcineurin/nuclear factor of activated T cell-dependent transcriptional activation in vascular myocytes. Suzuki E; Nishimatsu H; Satonaka H; Walsh K; Goto A; Omata M; Fujita T; Nagai R; Hirata Y Circ Res; 2002 May; 90(9):1004-11. PubMed ID: 12016267 [TBL] [Abstract][Full Text] [Related]
10. Focal adhesion kinase mediates MEF2 and c-Jun activation by stretch: role in the activation of the cardiac hypertrophic genetic program. Nadruz W; Corat MA; Marin TM; Guimarães Pereira GA; Franchini KG Cardiovasc Res; 2005 Oct; 68(1):87-97. PubMed ID: 15961069 [TBL] [Abstract][Full Text] [Related]
11. Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Grégoire S; Yang XJ Mol Cell Biol; 2005 Mar; 25(6):2273-87. PubMed ID: 15743823 [TBL] [Abstract][Full Text] [Related]
12. Calcium-regulated transcriptional pathways in the normal and pathologic heart. Zarain-Herzberg A; Fragoso-Medina J; Estrada-Avilés R IUBMB Life; 2011 Oct; 63(10):847-55. PubMed ID: 21901815 [TBL] [Abstract][Full Text] [Related]
13. Cocaine induces the expression of MEF2C transcription factor in rat striatum through activation of SIK1 and phosphorylation of the histone deacetylase HDAC5. Dietrich JB; Takemori H; Grosch-Dirrig S; Bertorello A; Zwiller J Synapse; 2012 Jan; 66(1):61-70. PubMed ID: 21954104 [TBL] [Abstract][Full Text] [Related]
14. Differences in MEF2 and NFAT transcriptional pathways according to human heart failure aetiology. Cortés R; Rivera M; Roselló-Lletí E; Martínez-Dolz L; Almenar L; Azorín I; Lago F; González-Juanatey JR; Portolés M PLoS One; 2012; 7(2):e30915. PubMed ID: 22363514 [TBL] [Abstract][Full Text] [Related]
15. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. Passier R; Zeng H; Frey N; Naya FJ; Nicol RL; McKinsey TA; Overbeek P; Richardson JA; Grant SR; Olson EN J Clin Invest; 2000 May; 105(10):1395-406. PubMed ID: 10811847 [TBL] [Abstract][Full Text] [Related]
17. HB-EGF induces cardiomyocyte hypertrophy via an ERK5-MEF2A-COX2 signaling pathway. Lee KS; Park JH; Lim HJ; Park HY Cell Signal; 2011 Jul; 23(7):1100-9. PubMed ID: 21244855 [TBL] [Abstract][Full Text] [Related]
18. Epac activation induces histone deacetylase nuclear export via a Ras-dependent signalling pathway. Métrich M; Laurent AC; Breckler M; Duquesnes N; Hmitou I; Courillau D; Blondeau JP; Crozatier B; Lezoualc'h F; Morel E Cell Signal; 2010 Oct; 22(10):1459-68. PubMed ID: 20576488 [TBL] [Abstract][Full Text] [Related]
19. Load-induced transcriptional activation of c-jun in rat myocardium: regulation by myocyte enhancer factor 2. Nadruz W; Kobarg CB; Constancio SS; Corat PD; Franchini KG Circ Res; 2003 Feb; 92(2):243-51. PubMed ID: 12574153 [TBL] [Abstract][Full Text] [Related]
20. The δA isoform of calmodulin kinase II mediates pathological cardiac hypertrophy by interfering with the HDAC4-MEF2 signaling pathway. Li C; Cai X; Sun H; Bai T; Zheng X; Zhou XW; Chen X; Gill DL; Li J; Tang XD Biochem Biophys Res Commun; 2011 May; 409(1):125-30. PubMed ID: 21554860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]