BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22467355)

  • 1. Application of Y(2)O(3):Er(3+) nanorods in dye-sensitized solar cells.
    Wang J; Wu J; Lin J; Huang M; Huang Y; Lan Z; Xiao Y; Yue G; Yin S; Sato T
    ChemSusChem; 2012 Jul; 5(7):1307-12. PubMed ID: 22467355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO₂ nanocomposite layer.
    Shan GB; Demopoulos GP
    Adv Mater; 2010 Oct; 22(39):4373-7. PubMed ID: 20809511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of multi-porous layer for dye-sensitized solar cells by doping with TiO2 nanoparticles.
    Hsieh TL; Chu AK; Huang WY
    J Nanosci Nanotechnol; 2013 Jan; 13(1):365-9. PubMed ID: 23646739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells.
    Lv M; Zheng D; Ye M; Sun L; Xiao J; Guo W; Lin C
    Nanoscale; 2012 Sep; 4(19):5872-9. PubMed ID: 22899164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells.
    Yip CT; Guo M; Huang H; Zhou L; Wang Y; Huang C
    Nanoscale; 2012 Jan; 4(2):448-50. PubMed ID: 22159643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells.
    Wang H; Bai Y; Wu Q; Zhou W; Zhang H; Li J; Guo L
    Phys Chem Chem Phys; 2011 Apr; 13(15):7008-13. PubMed ID: 21399795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dye-sensitized solar cells based on multiwalled carbon nanotube-titania/titania bilayer structure photoelectrode.
    Lin WJ; Hsu CT; Tsai YC
    J Colloid Interface Sci; 2011 Jun; 358(2):562-6. PubMed ID: 21463866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved dye sensitized solar cell performance in larger cell size by using TiO₂ nanotubes.
    Zhang Y; Khamwannah J; Kim H; Noh SY; Yang H; Jin S
    Nanotechnology; 2013 Feb; 24(4):045401. PubMed ID: 23299151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-dimensional hierarchical nanostructures of TiO(2) nanosheets on SnO(2) nanotubes for high efficiency solid-state dye-sensitized solar cells.
    Ahn SH; Kim DJ; Chi WS; Kim JH
    Adv Mater; 2013 Sep; 25(35):4893-7. PubMed ID: 23857743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells.
    Chen HY; Zhang TL; Fan J; Kuang DB; Su CY
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9205-11. PubMed ID: 23962052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step synthesis of vertically aligned anatase thornbush-like TiO2 nanowire arrays on transparent conducting oxides for solid-state dye-sensitized solar cells.
    Roh DK; Chi WS; Ahn SH; Jeon H; Kim JH
    ChemSusChem; 2013 Aug; 6(8):1384-91. PubMed ID: 23893968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion.
    Kim DH; Seong WM; Park IJ; Yoo ES; Shin SS; Kim JS; Jung HS; Lee S; Hong KS
    Nanoscale; 2013 Dec; 5(23):11725-32. PubMed ID: 24114150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple step growth of single crystalline rutile nanorods with the assistance of self-assembled monolayer for dye sensitized solar cells.
    Yang M; Neupane S; Wang X; He J; Li W; Pala N
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9809-15. PubMed ID: 24033252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells.
    Nath NC; Sarker S; Ahammad AJ; Lee JJ
    Phys Chem Chem Phys; 2012 Apr; 14(13):4333-8. PubMed ID: 22336885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spherical TiO2 aggregates with different building units for dye-sensitized solar cells.
    Liu Z; Su X; Hou G; Bi S; Xiao Z; Jia H
    Nanoscale; 2013 Sep; 5(17):8177-83. PubMed ID: 23892684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatase TiO2 nanotubes as photoanode for dye-sensitized solar cells.
    Javed HM; Que W; He Z
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1085-98. PubMed ID: 24749414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach.
    Yip CT; Huang H; Zhou L; Xie K; Wang Y; Feng T; Li J; Tam WY
    Adv Mater; 2011 Dec; 23(47):5624-8. PubMed ID: 22102221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of SnO₂ photoanode through Mg-doping and TiO₂-coating to synergically boost dye-sensitized solar cell performance.
    Pang H; Yang H; Guo CX; Li CM
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6261-5. PubMed ID: 23072276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of 3D interconnected porous TiO2 nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells.
    Koh JH; Koh JK; Seo JA; Shin JS; Kim JH
    Nanotechnology; 2011 Sep; 22(36):365401. PubMed ID: 21836328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.