These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 22467662)

  • 21. Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.
    Fellner J; Rechberger H
    Waste Manag; 2009 May; 29(5):1495-503. PubMed ID: 19157836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solid recovered fuels in the cement industry--semi-automated sample preparation unit as a means for facilitated practical application.
    Aldrian A; Sarc R; Pomberger R; Lorber KE; Sipple EM
    Waste Manag Res; 2016 Mar; 34(3):254-64. PubMed ID: 26759433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design, quality and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry - Update 2019.
    Sarc R; Seidler IM; Kandlbauer L; Lorber KE; Pomberger R
    Waste Manag Res; 2019 Sep; 37(9):885-897. PubMed ID: 31333076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid recovered fuel: An experiment on classification and potential applications.
    Bessi C; Lombardi L; Meoni R; Canovai A; Corti A
    Waste Manag; 2016 Jan; 47(Pt B):184-94. PubMed ID: 26298482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed.
    Krüger B; Mrotzek A; Wirtz S
    Waste Manag; 2014 Feb; 34(2):390-401. PubMed ID: 24252370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The biogenic content of process streams from mechanical-biological treatment plants producing solid recovered fuel. Do the manual sorting and selective dissolution determination methods correlate?
    Séverin M; Velis CA; Longhurst PJ; Pollard SJ
    Waste Manag; 2010 Jul; 30(7):1171-82. PubMed ID: 20116991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review of technologies and performances of thermal treatment systems for energy recovery from waste.
    Lombardi L; Carnevale E; Corti A
    Waste Manag; 2015 Mar; 37():26-44. PubMed ID: 25535103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry.
    López-Sabirón AM; Fleiger K; Schäfer S; Antoñanzas J; Irazustabarrena A; Aranda-Usón A; Ferreira GA
    Waste Manag Res; 2015 Aug; 33(8):715-22. PubMed ID: 26081643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-gasification of solid waste and lignite - a case study for Western Macedonia.
    Koukouzas N; Katsiadakis A; Karlopoulos E; Kakaras E
    Waste Manag; 2008; 28(7):1263-75. PubMed ID: 17631995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solid recovered fuel: materials flow analysis and fuel property development during the mechanical processing of biodried waste.
    Velis CA; Wagland S; Longhurst P; Robson B; Sinfield K; Wise S; Pollard S
    Environ Sci Technol; 2013 Mar; 47(6):2957-65. PubMed ID: 23398118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methods for determining the biomass content of waste.
    Staber W; Flamme S; Feltner J
    Waste Manag Res; 2008 Feb; 26(1):78-87. PubMed ID: 18338704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current issues on the production and utilization of medium-calorific solid recovered fuel: a case study on SRF for the HOTDISC technology.
    Pomberger R; Klampfl-Pernold H; Abl C
    Waste Manag Res; 2012 Apr; 30(4):413-20. PubMed ID: 22452954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quality control of waste to incineration--waste composition analysis in Lidköping, Sweden.
    Petersen CM; Berg PE; Rönnegård L
    Waste Manag Res; 2005 Dec; 23(6):527-33. PubMed ID: 16379121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.
    Sarc R; Lorber KE; Pomberger R; Rogetzer M; Sipple EM
    Waste Manag Res; 2014 Jul; 32(7):565-85. PubMed ID: 24942836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective collection as a pretreatment for indirect solid recovered fuel generation.
    Rada EC; Ragazzi M
    Waste Manag; 2014 Feb; 34(2):291-7. PubMed ID: 24365038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wastes as co-fuels: the policy framework for solid recovered fuel (SRF) in Europe, with UK implications.
    Garg A; Smith R; Hill D; Simms N; Pollard S
    Environ Sci Technol; 2007 Jul; 41(14):4868-74. PubMed ID: 17711195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Technology of waste incineration].
    Thömen KH
    Zentralbl Bakteriol Mikrobiol Hyg B; 1983 Sep; 178(1-2):174-85. PubMed ID: 6649993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy efficiency in waste-to-energy and its relevance with regard to climate control.
    Ragossnig AM; Wartha C; Kirchner A
    Waste Manag Res; 2008 Feb; 26(1):70-7. PubMed ID: 18338703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.