These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22467916)

  • 1. Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events.
    Chartier M; Gaudreault F; Najmanovich R
    Bioinformatics; 2012 Jun; 28(11):1438-45. PubMed ID: 22467916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatic Identification of Rare Codon Clusters (RCCs) in HBV Genome and Evaluation of RCCs in Proteins Structure of Hepatitis B Virus.
    Mortazavi M; Zarenezhad M; Gholamzadeh S; Alavian SM; Ghorbani M; Dehghani R; Malekpour A; Meshkibaf M; Fakhrzad A
    Hepat Mon; 2016 Oct; 16(10):e39909. PubMed ID: 27882067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The characteristics of rare codon clusters in the genome and proteins of hepatitis C virus; a bioinformatics look.
    Fattahi M; Malekpour A; Mortazavi M; Safarpour A; Naseri N
    Middle East J Dig Dis; 2014 Oct; 6(4):214-27. PubMed ID: 25349685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Widespread position-specific conservation of synonymous rare codons within coding sequences.
    Chaney JL; Steele A; Carmichael R; Rodriguez A; Specht AT; Ngo K; Li J; Emrich S; Clark PL
    PLoS Comput Biol; 2017 May; 13(5):e1005531. PubMed ID: 28475588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LaTcOm: a web server for visualizing rare codon clusters in coding sequences.
    Theodosiou A; Promponas VJ
    Bioinformatics; 2012 Feb; 28(4):591-2. PubMed ID: 22199385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DIVCLUS: an automatic method in the GEANFAMMER package that finds homologous domains in single- and multi-domain proteins.
    Park J; Teichmann SA
    Bioinformatics; 1998; 14(2):144-50. PubMed ID: 9545446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rare codons cluster.
    Clarke TF; Clark PL
    PLoS One; 2008; 3(10):e3412. PubMed ID: 18923675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pfam: The protein families database in 2021.
    Mistry J; Chuguransky S; Williams L; Qureshi M; Salazar GA; Sonnhammer ELL; Tosatto SCE; Paladin L; Raj S; Richardson LJ; Finn RD; Bateman A
    Nucleic Acids Res; 2021 Jan; 49(D1):D412-D419. PubMed ID: 33125078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network analysis of synonymous codon usage.
    Newaz K; Wright G; Piland J; Li J; Clark PL; Emrich SJ; Milenković T
    Bioinformatics; 2020 Dec; 36(19):4876-4884. PubMed ID: 32609328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connect the dots: exposing hidden protein family connections from the entire sequence tree.
    Loewenstein Y; Linial M
    Bioinformatics; 2008 Aug; 24(16):i193-9. PubMed ID: 18689824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased incidence of rare codon clusters at 5' and 3' gene termini: implications for function.
    Clarke TF; Clark PL
    BMC Genomics; 2010 Feb; 11():118. PubMed ID: 20167116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins.
    Bateman A; Birney E; Durbin R; Eddy SR; Finn RD; Sonnhammer EL
    Nucleic Acids Res; 1999 Jan; 27(1):260-2. PubMed ID: 9847196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of conserved physico-chemical characteristics of proteins by analyzing clusters of positions with co-ordinated substitutions.
    Afonnikov DA; Oshchepkov DY; Kolchanov NA
    Bioinformatics; 2001 Nov; 17(11):1035-46. PubMed ID: 11724732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropy-driven partitioning of the hierarchical protein space.
    Rappoport N; Stern A; Linial N; Linial M
    Bioinformatics; 2014 Sep; 30(17):i624-30. PubMed ID: 25161256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PAUSE software for analysis of translational control over protein targeting: application to E. nidulans membrane proteins.
    Dessen P; Képès F
    Gene; 2000 Feb; 244(1-2):89-96. PubMed ID: 10689191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes.
    Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N
    Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysing gene expressions with GRANK.
    de Boer WP; Oudejans JJ; Meijer CJ; Lankelma J
    Bioinformatics; 2003 Oct; 19(15):2000-1. PubMed ID: 14555635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHOG-BLAST--a new generation tool for fast similarity search of protein families.
    Merkeev IV; Mironov AA
    BMC Evol Biol; 2006 Jun; 6():51. PubMed ID: 16792802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering the annotation space of proteins.
    Kunin V; Ouzounis CA
    BMC Bioinformatics; 2005 Feb; 6():24. PubMed ID: 15703069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generic algorithm to predict the speed of translational elongation: implications for protein biogenesis.
    Zhang G; Ignatova Z
    PLoS One; 2009; 4(4):e5036. PubMed ID: 19343177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.