These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22468462)

  • 1. Comparison of different methods for estimating muscle forces in human movement.
    Lin YC; Dorn TW; Schache AG; Pandy MG
    Proc Inst Mech Eng H; 2012 Feb; 226(2):103-12. PubMed ID: 22468462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A physiology-based inverse dynamic analysis of human gait using sequential convex programming: a comparative study.
    De Groote F; Demeulenaere B; Swevers J; De Schutter J; Jonkers I
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1093-102. PubMed ID: 21878002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion.
    Selk Ghafari A; Meghdari A; Vossoughi G
    Proc Inst Mech Eng H; 2009 Aug; 223(6):663-75. PubMed ID: 19743633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of lower limb musculoskeletal models with clinical relevance is dependent upon the fidelity of the mathematical description of the lower limb. Part I: Equations of motion.
    Cleather DJ; Bull AM
    Proc Inst Mech Eng H; 2012 Feb; 226(2):120-32. PubMed ID: 22468464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis.
    Ackland DC; Lin YC; Pandy MG
    J Biomech; 2012 May; 45(8):1463-71. PubMed ID: 22507351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ
    J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA; Perry J; Gitter AJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A task-specific validation of homogeneous non-linear optimisation approaches.
    Jinha A; Ait-Haddou R; Kaya M; Herzog W
    J Theor Biol; 2009 Aug; 259(4):695-700. PubMed ID: 19406130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why are Antagonist Muscles Co-activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks.
    Lai AKM; Arnold AS; Wakeling JM
    Ann Biomed Eng; 2017 Dec; 45(12):2762-2774. PubMed ID: 28900782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F; Dumas R; Cheze L; Wang X
    J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle-driven forward dynamics simulation for the study of differences in muscle function during stair ascent and descent.
    Selk Ghafari A; Meghdari A; Vossoughi GR
    Proc Inst Mech Eng H; 2009 Oct; 223(7):863-74. PubMed ID: 19908425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait.
    Dumas R; Moissenet F; Gasparutto X; Cheze L
    Proc Inst Mech Eng H; 2012 Feb; 226(2):146-60. PubMed ID: 22468466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle discretization affects the loading transferred to bones in lower-limb musculoskeletal models.
    Valente G; Martelli S; Taddei F; Farinella G; Viceconti M
    Proc Inst Mech Eng H; 2012 Feb; 226(2):161-9. PubMed ID: 22468467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement.
    Seth A; Pandy MG
    J Biomech; 2007; 40(2):356-66. PubMed ID: 16513124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The redundant nature of locomotor optimization laws.
    Collins JJ
    J Biomech; 1995 Mar; 28(3):251-67. PubMed ID: 7730385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of maximum sprinting speed to characteristic parameters of the muscle force-velocity relationship.
    Miller RH; Umberger BR; Caldwell GE
    J Biomech; 2012 May; 45(8):1406-13. PubMed ID: 22405495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of the lower limb for analysis of human movement.
    Arnold EM; Ward SR; Lieber RL; Delp SL
    Ann Biomed Eng; 2010 Feb; 38(2):269-79. PubMed ID: 19957039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.