These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 22468677)

  • 1. An automaton approach for waiting times in DNA evolution.
    Behrens S; Nicaud C; Nicodème P
    J Comput Biol; 2012 May; 19(5):550-62. PubMed ID: 22468677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying the evolution of promoter sequences: a waiting time problem.
    Behrens S; Vingron M
    J Comput Biol; 2010 Dec; 17(12):1591-606. PubMed ID: 21128851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of cis-regulatory elements: from high-information content analysis to motif identification.
    Li G; Lu J; Olman V; Xu Y
    J Bioinform Comput Biol; 2007 Aug; 5(4):817-38. PubMed ID: 17787058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering of DNA words and biological function: a proof of principle.
    Hackenberg M; Rueda A; Carpena P; Bernaola-Galván P; Barturen G; Oliver JL
    J Theor Biol; 2012 Mar; 297():127-36. PubMed ID: 22226985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rare k-mer DNA: Identification of sequence motifs and prediction of CpG island and promoter.
    Mohamed Hashim EK; Abdullah R
    J Theor Biol; 2015 Dec; 387():88-100. PubMed ID: 26427337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MotifCut: regulatory motifs finding with maximum density subgraphs.
    Fratkin E; Naughton BT; Brutlag DL; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e150-7. PubMed ID: 16873465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of decoys on the noise and dynamics of gene expression.
    Burger A; Walczak AM; Wolynes PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041920. PubMed ID: 23214628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of DNA word abundances in four yeast genomes using a novel statistical background model.
    Hariharan R; Simon R; Pillai MR; Taylor TD
    PLoS One; 2013; 8(3):e58038. PubMed ID: 23472131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joker de Bruijn: Covering k-Mers Using Joker Characters.
    Orenstein Y; Yu YW; Berger B
    J Comput Biol; 2018 Nov; 25(11):1171-1178. PubMed ID: 30117747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating a linear k-mer model for protein-DNA interactions using high-throughput SELEX data.
    Kähärä J; Lähdesmäki H
    BMC Bioinformatics; 2013; 14 Suppl 10(Suppl 10):S2. PubMed ID: 24267147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels.
    Wang X; Kuwahara H; Gao X
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S5. PubMed ID: 25605483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding short DNA motifs using permuted Markov models.
    Zhao X; Huang H; Speed TP
    J Comput Biol; 2005; 12(6):894-906. PubMed ID: 16108724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic extraction of position specific cooccurrence of transcription factor bindings on promoters.
    Tsunoda T; Takagi T
    Pac Symp Biocomput; 1998; ():252-63. PubMed ID: 9697187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Space-efficient computation of k-mer dictionaries for large values of k.
    Díaz-Domínguez D; Leinonen M; Salmela L
    Algorithms Mol Biol; 2024 Apr; 19(1):14. PubMed ID: 38581000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombination spot identification Based on gapped k-mers.
    Wang R; Xu Y; Liu B
    Sci Rep; 2016 Mar; 6():23934. PubMed ID: 27030570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes.
    Kurtz S; Narechania A; Stein JC; Ware D
    BMC Genomics; 2008 Oct; 9():517. PubMed ID: 18976482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using transcription factor binding site co-occurrence to predict regulatory regions.
    Klein H; Vingron M
    Genome Inform; 2007; 18():109-18. PubMed ID: 18546479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.