BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 22468678)

  • 1. A topology-based score for pathway enrichment.
    Ibrahim MA; Jassim S; Cawthorne MA; Langlands K
    J Comput Biol; 2012 May; 19(5):563-73. PubMed ID: 22468678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A MATLAB tool for pathway enrichment using a topology-based pathway regulation score.
    Ibrahim M; Jassim S; Cawthorne MA; Langlands K
    BMC Bioinformatics; 2014 Nov; 15(1):358. PubMed ID: 25367050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical comparison of topology-based pathway analysis methods.
    Ihnatova I; Popovici V; Budinska E
    PLoS One; 2018; 13(1):e0191154. PubMed ID: 29370226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key pathways involved in prostate cancer based on gene set enrichment analysis and meta analysis.
    Ning QY; Wu JZ; Zang N; Liang J; Hu YL; Mo ZN
    Genet Mol Res; 2011 Dec; 10(4):3856-87. PubMed ID: 22194210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the altered transcriptional programs in breast cancer using independent component analysis.
    Teschendorff AE; Journée M; Absil PA; Sepulchre R; Caldas C
    PLoS Comput Biol; 2007 Aug; 3(8):e161. PubMed ID: 17708679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Set/Pathway enrichment analysis.
    Hung JH
    Methods Mol Biol; 2013; 939():201-13. PubMed ID: 23192548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovering causal signaling pathways through gene-expression patterns.
    Parikh JR; Klinger B; Xia Y; Marto JA; Blüthgen N
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W109-17. PubMed ID: 20494976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study on gene set and pathway topology-based enrichment methods.
    Bayerlová M; Jung K; Kramer F; Klemm F; Bleckmann A; Beißbarth T
    BMC Bioinformatics; 2015 Oct; 16():334. PubMed ID: 26489510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosstalk pathway inference using topological information and biclustering of gene expression data.
    Dussaut JS; Gallo CA; Cecchini RL; Carballido JA; Ponzoni I
    Biosystems; 2016 Dec; 150():1-12. PubMed ID: 27521767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel signaling pathway impact analysis.
    Tarca AL; Draghici S; Khatri P; Hassan SS; Mittal P; Kim JS; Kim CJ; Kusanovic JP; Romero R
    Bioinformatics; 2009 Jan; 25(1):75-82. PubMed ID: 18990722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of sample set enrichment scores: assaying the enrichment of sets of genes for individual samples in genome-wide expression profiles.
    Edelman E; Porrello A; Guinney J; Balakumaran B; Bild A; Febbo PG; Mukherjee S
    Bioinformatics; 2006 Jul; 22(14):e108-16. PubMed ID: 16873460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analyses of stress-responsive genes in Arabidopsis thaliana: insight from genomic data mining, functional enrichment, pathway analysis and phenomics.
    Naika M; Shameer K; Sowdhamini R
    Mol Biosyst; 2013 Jul; 9(7):1888-908. PubMed ID: 23645342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microarray-based transcriptome profiling of ovarian cancer cells.
    Cui J; Xu Y; Puett D
    Methods Mol Biol; 2013; 1049():119-37. PubMed ID: 23913214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathway level analysis by augmenting activities of transcription factor target genes.
    Jung H; Lee E; Kim JW; Lee D
    IET Syst Biol; 2009 Nov; 3(6):534-42. PubMed ID: 19947779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance analysis of time-series transcriptomic data: a methodology that enables the identification and further exploration of the differentially expressed genes at each time-point.
    Dutta B; Snyder R; Klapa MI
    Biotechnol Bioeng; 2007 Oct; 98(3):668-78. PubMed ID: 17385748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integer programming-based method for completing signaling pathways and its application to analysis of colorectal cancer.
    Tamura T; Yamanishi Y; Tanabe M; Goto S; Kanehisa M; Horimoto K; Akutsu T
    Genome Inform; 2010; 24():193-203. PubMed ID: 22081600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring pathway crosstalk networks using gene set co-expression signatures.
    Wang T; Gu J; Yuan J; Tao R; Li Y; Li S
    Mol Biosyst; 2013 Jul; 9(7):1822-8. PubMed ID: 23591523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identify condition-specific gene co-expression networks.
    Kalluru V; Machiraju R; Huang K
    Int J Comput Biol Drug Des; 2013; 6(1-2):50-9. PubMed ID: 23428473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A signal transduction score flow algorithm for cyclic cellular pathway analysis, which combines transcriptome and ChIP-seq data.
    Isik Z; Ersahin T; Atalay V; Aykanat C; Cetin-Atalay R
    Mol Biosyst; 2012 Oct; 8(12):3224-31. PubMed ID: 23042589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel candidate targets of beta-catenin/T-cell factor signaling identified by gene expression profiling of ovarian endometrioid adenocarcinomas.
    Schwartz DR; Wu R; Kardia SL; Levin AM; Huang CC; Shedden KA; Kuick R; Misek DE; Hanash SM; Taylor JM; Reed H; Hendrix N; Zhai Y; Fearon ER; Cho KR
    Cancer Res; 2003 Jun; 63(11):2913-22. PubMed ID: 12782598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.