BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 22468678)

  • 21. Target validation for genomics using peptide-specific phage antibodies: a study of five gene products overexpressed in colorectal cancer.
    Van Beijnum JR; Moerkerk PT; Gerbers AJ; De Bruïne AP; Arends JW; Hoogenboom HR; Hufton SE
    Int J Cancer; 2002 Sep; 101(2):118-27. PubMed ID: 12209988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel method to prioritize RNAseq data for post-hoc analysis based on absolute changes in transcript abundance.
    McNutt P; Gut I; Hubbard K; Beske P
    Stat Appl Genet Mol Biol; 2015 Jun; 14(3):227-41. PubMed ID: 25781714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enrichment analysis in high-throughput genomics - accounting for dependency in the NULL.
    Gold DL; Coombes KR; Wang J; Mallick B
    Brief Bioinform; 2007 Mar; 8(2):71-7. PubMed ID: 17077137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microarrays--analysis of signaling pathways.
    Ramachandran A; Black MA; Shelling AN; Love DR
    Methods Mol Med; 2008; 141():115-30. PubMed ID: 18453087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Key genes and pathways in thyroid cancer based on gene set enrichment analysis.
    He W; Qi B; Zhou Q; Lu C; Huang Q; Xian L; Chen M
    Oncol Rep; 2013 Sep; 30(3):1391-7. PubMed ID: 23784086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mining published lists of cancer related microarray experiments: identification of a gene expression signature having a critical role in cell-cycle control.
    Finocchiaro G; Mancuso F; Muller H
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S14. PubMed ID: 16351740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential biological insights revealed by an integrated assessment of proteomic and transcriptomic data in human colorectal cancer.
    Takemasa I; Kittaka N; Hitora T; Watanabe M; Matsuo E; Mizushima T; Ikeda M; Yamamoto H; Sekimoto M; Nishimura O; Doki Y; Mori M
    Int J Oncol; 2012 Feb; 40(2):551-9. PubMed ID: 22025299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semi-Supervised Topological Analysis for Elucidating Hidden Structures in High-Dimensional Transcriptome Datasets.
    Feng T; Davila JI; Liu Y; Lin S; Huang S; Wang C
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1620-1631. PubMed ID: 31675340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signaling pathway impact analysis by incorporating the importance and specificity of genes (SPIA-IS).
    Fang H; Li X; Zan X; Shen L; Ma R; Liu W
    Comput Biol Chem; 2017 Dec; 71():236-244. PubMed ID: 28988640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topological features in cancer gene expression data.
    Lockwood S; Krishnamoorthy B
    Pac Symp Biocomput; 2015; ():108-19. PubMed ID: 25592573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphite Web: Web tool for gene set analysis exploiting pathway topology.
    Sales G; Calura E; Martini P; Romualdi C
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W89-97. PubMed ID: 23666626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SPEED2: inferring upstream pathway activity from differential gene expression.
    Rydenfelt M; Klinger B; Klünemann M; Blüthgen N
    Nucleic Acids Res; 2020 Jul; 48(W1):W307-W312. PubMed ID: 32313938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FoPA: identifying perturbed signaling pathways in clinical conditions using formal methods.
    Mansoori F; Rahgozar M; Kavousi K
    BMC Bioinformatics; 2019 Feb; 20(1):92. PubMed ID: 30808299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. REPA: Applying Pathway Analysis to Genome-Wide Transcription Factor Binding Data.
    Patra P; Izawa T; Pena-Castillo L
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1270-1283. PubMed ID: 27019499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using set theory to reduce redundancy in pathway sets.
    Stoney RA; Schwartz JM; Robertson DL; Nenadic G
    BMC Bioinformatics; 2018 Oct; 19(1):386. PubMed ID: 30340461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying disease-associated pathways in one-phenotype data based on reversal gene expression orderings.
    Hong G; Li H; Zhang J; Guan Q; Chen R; Guo Z
    Sci Rep; 2017 May; 7(1):1348. PubMed ID: 28465555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. timeClip: pathway analysis for time course data without replicates.
    Martini P; Sales G; Calura E; Cagnin S; Chiogna M; Romualdi C
    BMC Bioinformatics; 2014; 15 Suppl 5(Suppl 5):S3. PubMed ID: 25077979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enrichment on steps, not genes, improves inference of differentially expressed pathways.
    Markarian N; Van Auken KM; Ebert D; Sternberg PW
    PLoS Comput Biol; 2024 Mar; 20(3):e1011968. PubMed ID: 38527066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PathNet: a tool for pathway analysis using topological information.
    Dutta B; Wallqvist A; Reifman J
    Source Code Biol Med; 2012 Sep; 7(1):10. PubMed ID: 23006764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PSF toolkit: an R package for pathway curation and topology-aware analysis.
    Hakobyan S; Stepanyan A; Nersisyan L; Binder H; Arakelyan A
    Front Genet; 2023; 14():1264656. PubMed ID: 37680201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.