These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22468828)

  • 1. Interfacial thermal conductance observed to be higher in semiconducting than metallic carbon nanotubes.
    Kang SD; Lim SC; Lee ES; Cho YW; Kim YH; Lyeo HK; Lee YH
    ACS Nano; 2012 May; 6(5):3853-60. PubMed ID: 22468828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance.
    Diao J; Srivastava D; Menon M
    J Chem Phys; 2008 Apr; 128(16):164708. PubMed ID: 18447480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic transport between graphene layers covalently connected by carbon nanotubes.
    Novaes FD; Rurali R; Ordejón P
    ACS Nano; 2010 Dec; 4(12):7596-602. PubMed ID: 21186844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a carbon-nanotube-based field-effect transistor by microcontact printing.
    Mehlich J; Miyata Y; Shinohara H; Ravoo BJ
    Small; 2012 Jul; 8(14):2258-63. PubMed ID: 22511338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes.
    Sarker BK; Kang N; Khondaker SI
    Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial heat flow in carbon nanotube suspensions.
    Huxtable ST; Cahill DG; Shenogin S; Xue L; Ozisik R; Barone P; Usrey M; Strano MS; Siddons G; Shim M; Keblinski P
    Nat Mater; 2003 Nov; 2(11):731-4. PubMed ID: 14556001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal features of quantized thermal conductance of carbon nanotubes.
    Yamamoto T; Watanabe S; Watanabe K
    Phys Rev Lett; 2004 Feb; 92(7):075502. PubMed ID: 14995867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic Structure of Semiconducting and Metallic Tubes in TiO2/Carbon Nanotube Heterojunctions: Density Functional Theory Calculations.
    Long R
    J Phys Chem Lett; 2013 Apr; 4(8):1340-6. PubMed ID: 26282150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density.
    Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE
    ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser induced selective removal of metallic carbon nanotubes.
    Mahjouri-Samani M; Zhou YS; Xiong W; Gao Y; Mitchell M; Lu YF
    Nanotechnology; 2009 Dec; 20(49):495202. PubMed ID: 19893146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption cross section and interfacial thermal conductance from an individual optically excited single-walled carbon nanotube.
    Wang D; Carlson MT; Richardson HH
    ACS Nano; 2011 Sep; 5(9):7391-6. PubMed ID: 21834578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography.
    Tulevski GS; Franklin AD; Afzali A
    ACS Nano; 2013 Apr; 7(4):2971-6. PubMed ID: 23484490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity.
    Fu Y; Nabiollahi N; Wang T; Wang S; Hu Z; Carlberg B; Zhang Y; Wang X; Liu J
    Nanotechnology; 2012 Feb; 23(4):045304. PubMed ID: 22222357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the coupling of diazonium to single-walled carbon nanotubes and its consequences.
    Schmidt G; Gallon S; Esnouf S; Bourgoin JP; Chenevier P
    Chemistry; 2009; 15(9):2101-10. PubMed ID: 19142944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays.
    Engel M; Small JP; Steiner M; Freitag M; Green AA; Hersam MC; Avouris P
    ACS Nano; 2008 Dec; 2(12):2445-52. PubMed ID: 19206278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Height and morphology dependent heat dissipation of vertically aligned carbon nanotubes.
    Cohen Y; Reddy SK; Ben-Shimon Y; Ya'akobovitz A
    Nanotechnology; 2019 Dec; 30(50):505705. PubMed ID: 31491776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-aligned Cu etch mask for individually addressable metallic and semiconducting carbon nanotubes.
    Jiang Y; Xiong F; Tsai CL; Ozel T; Pop E; Shim M
    ACS Nano; 2014 Jun; 8(6):6500-8. PubMed ID: 24848422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.
    Subramaniam C; Yasuda Y; Takeya S; Ata S; Nishizawa A; Futaba D; Yamada T; Hata K
    Nanoscale; 2014 Mar; 6(5):2669-74. PubMed ID: 24441433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.