These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Nozik AJ Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844 [TBL] [Abstract][Full Text] [Related]
6. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals. Kanemitsu Y Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584 [TBL] [Abstract][Full Text] [Related]
7. The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots. Jaeger HM; Fischer S; Prezhdo OV J Chem Phys; 2012 Feb; 136(6):064701. PubMed ID: 22360209 [TBL] [Abstract][Full Text] [Related]
11. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. Huang J; Huang Z; Yang Y; Zhu H; Lian T J Am Chem Soc; 2010 Apr; 132(13):4858-64. PubMed ID: 20218563 [TBL] [Abstract][Full Text] [Related]
12. Unconventional gap state of trapped exciton in lead sulfide quantum dots. Lewis JE; Wu S; Jiang XJ Nanotechnology; 2010 Nov; 21(45):455402. PubMed ID: 20947935 [TBL] [Abstract][Full Text] [Related]
13. The surface termination effect on the quantum confinement and electron affinities of 3C-SiC quantum dots: a first-principles study. Zhang Z; Dai Y; Yu L; Guo M; Huang B; Whangbo MH Nanoscale; 2012 Mar; 4(5):1592-7. PubMed ID: 22294210 [TBL] [Abstract][Full Text] [Related]
14. Theory of alkyl-terminated silicon quantum dots. Reboredo FA; Galli G J Phys Chem B; 2005 Jan; 109(3):1072-8. PubMed ID: 16851062 [TBL] [Abstract][Full Text] [Related]
15. Absorption cross-section and related optical properties of colloidal InAs quantum dots. Yu P; Beard MC; Ellingson RJ; Ferrere S; Curtis C; Drexler J; Luiszer F; Nozik AJ J Phys Chem B; 2005 Apr; 109(15):7084-7. PubMed ID: 16851806 [TBL] [Abstract][Full Text] [Related]
16. Free standing luminescent silicon quantum dots: evidence of quantum confinement and defect related transitions. Ray M; Hossain SM; Klie RF; Banerjee K; Ghosh S Nanotechnology; 2010 Dec; 21(50):505602. PubMed ID: 21098931 [TBL] [Abstract][Full Text] [Related]
17. Tailoring the optical gap of silicon quantum dots without changing their size. Li H; Wu Z; Zhou T; Sellinger A; Lusk MT Phys Chem Chem Phys; 2014 Sep; 16(36):19275-81. PubMed ID: 25098607 [TBL] [Abstract][Full Text] [Related]
18. Size dependence of the multiple exciton generation rate in CdSe quantum dots. Lin Z; Franceschetti A; Lusk MT ACS Nano; 2011 Apr; 5(4):2503-11. PubMed ID: 21355556 [TBL] [Abstract][Full Text] [Related]
19. Unraveling the structure and dynamics of excitons in semiconductor quantum dots. Kambhampati P Acc Chem Res; 2011 Jan; 44(1):1-13. PubMed ID: 20942416 [TBL] [Abstract][Full Text] [Related]
20. Ultrafast exciton dynamics in InAs/ZnSe nanocrystal quantum dots. Cadirci M; Stubbs SK; Hardman SJ; Masala O; Allan G; Delerue C; Pickett N; Binks DJ Phys Chem Chem Phys; 2012 Nov; 14(43):15166-72. PubMed ID: 22968520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]