These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 22468899)

  • 1. Efficient exciton transport between strongly quantum-confined silicon quantum dots.
    Lin Z; Li H; Franceschetti A; Lusk MT
    ACS Nano; 2012 May; 6(5):4029-38. PubMed ID: 22468899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal size regime for oxidation-resistant silicon quantum dots.
    Li H; Lusk MT; Collins RT; Wu Z
    ACS Nano; 2012 Nov; 6(11):9690-9. PubMed ID: 23061893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-Dependent Exciton Formation Dynamics in Colloidal Silicon Quantum Dots.
    Bergren MR; Palomaki PK; Neale NR; Furtak TE; Beard MC
    ACS Nano; 2016 Feb; 10(2):2316-23. PubMed ID: 26811876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion.
    Nozik AJ
    Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots.
    Jaeger HM; Fischer S; Prezhdo OV
    J Chem Phys; 2012 Feb; 136(6):064701. PubMed ID: 22360209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface ligands increase photoexcitation relaxation rates in CdSe quantum dots.
    Kilina S; Velizhanin KA; Ivanov S; Prezhdo OV; Tretiak S
    ACS Nano; 2012 Jul; 6(7):6515-24. PubMed ID: 22742432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple exciton generation in nanocrystal quantum dots--controversy, current status and future prospects.
    Binks DJ
    Phys Chem Chem Phys; 2011 Jul; 13(28):12693-704. PubMed ID: 21603696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient exciton funneling in cascaded PbS quantum dot superstructures.
    Xu F; Ma X; Haughn CR; Benavides J; Doty MF; Cloutier SG
    ACS Nano; 2011 Dec; 5(12):9950-7. PubMed ID: 22085035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue.
    Huang J; Huang Z; Yang Y; Zhu H; Lian T
    J Am Chem Soc; 2010 Apr; 132(13):4858-64. PubMed ID: 20218563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconventional gap state of trapped exciton in lead sulfide quantum dots.
    Lewis JE; Wu S; Jiang XJ
    Nanotechnology; 2010 Nov; 21(45):455402. PubMed ID: 20947935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The surface termination effect on the quantum confinement and electron affinities of 3C-SiC quantum dots: a first-principles study.
    Zhang Z; Dai Y; Yu L; Guo M; Huang B; Whangbo MH
    Nanoscale; 2012 Mar; 4(5):1592-7. PubMed ID: 22294210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of alkyl-terminated silicon quantum dots.
    Reboredo FA; Galli G
    J Phys Chem B; 2005 Jan; 109(3):1072-8. PubMed ID: 16851062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption cross-section and related optical properties of colloidal InAs quantum dots.
    Yu P; Beard MC; Ellingson RJ; Ferrere S; Curtis C; Drexler J; Luiszer F; Nozik AJ
    J Phys Chem B; 2005 Apr; 109(15):7084-7. PubMed ID: 16851806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free standing luminescent silicon quantum dots: evidence of quantum confinement and defect related transitions.
    Ray M; Hossain SM; Klie RF; Banerjee K; Ghosh S
    Nanotechnology; 2010 Dec; 21(50):505602. PubMed ID: 21098931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring the optical gap of silicon quantum dots without changing their size.
    Li H; Wu Z; Zhou T; Sellinger A; Lusk MT
    Phys Chem Chem Phys; 2014 Sep; 16(36):19275-81. PubMed ID: 25098607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size dependence of the multiple exciton generation rate in CdSe quantum dots.
    Lin Z; Franceschetti A; Lusk MT
    ACS Nano; 2011 Apr; 5(4):2503-11. PubMed ID: 21355556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the structure and dynamics of excitons in semiconductor quantum dots.
    Kambhampati P
    Acc Chem Res; 2011 Jan; 44(1):1-13. PubMed ID: 20942416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast exciton dynamics in InAs/ZnSe nanocrystal quantum dots.
    Cadirci M; Stubbs SK; Hardman SJ; Masala O; Allan G; Delerue C; Pickett N; Binks DJ
    Phys Chem Chem Phys; 2012 Nov; 14(43):15166-72. PubMed ID: 22968520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.