These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 22468995)

  • 1. Á priori alignment of transtibial prostheses: a comparison and evaluation of three methods.
    Ikeda AJ; Reisinger KD; Malkush M; Wu Y; Edwards ML; Kistenberg RS
    Disabil Rehabil Assist Technol; 2012 Sep; 7(5):381-8. PubMed ID: 22468995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and comparison of á priori alignment techniques for transtibial prostheses in the developing world - field trial in Nicaragua.
    Reisinger KD; Casanova H; Wu Y; Moorer C
    Disabil Rehabil Assist Technol; 2009 Nov; 4(6):393-405. PubMed ID: 19817653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of á priori alignment techniques for transtibial prostheses in the developing world - pilot study.
    Reisinger KD; Casanova H; Wu Y; Moorer C
    Disabil Rehabil; 2007 Jun 15-30; 29(11-12):863-72. PubMed ID: 17577721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of malalignment on socket reaction moments during gait in amputees with transtibial prostheses.
    Boone DA; Kobayashi T; Chou TG; Arabian AK; Coleman KL; Orendurff MS; Zhang M
    Gait Posture; 2013 Apr; 37(4):620-6. PubMed ID: 23177920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic alignment of transtibial prostheses through visualization of socket reaction moments.
    Kobayashi T; Orendurff MS; Boone DA
    Prosthet Orthot Int; 2015 Dec; 39(6):512-6. PubMed ID: 25121726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait analysis of low-cost flexible-shank transtibial prostheses.
    Lee WC; Zhang M; Chan PP; Boone DA
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):370-7. PubMed ID: 17009497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertical alignment axis for transtibial prostheses: a simplified alignment method.
    Lin MC; Wu YC; Edwards M
    J Formos Med Assoc; 2000 Jan; 99(1):39-44. PubMed ID: 10743345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of transtibial prosthesis alignment changes on out-of-plane socket reaction moments during walking in amputees.
    Kobayashi T; Orendurff MS; Zhang M; Boone DA
    J Biomech; 2012 Oct; 45(15):2603-9. PubMed ID: 22975295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Influence of wall thickness on the stress distribution within transtibial monolimb].
    Liu Z; Fan Y; Zhang M; Jiang W; Pu F; Chen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):562-5. PubMed ID: 15357432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic alignment using external socket reaction moments in trans-tibial amputees.
    Jonkergouw N; Prins MR; van der Wurff P; Gijsbers J; Houdijk H; Buis AWP
    Gait Posture; 2019 Feb; 68():122-129. PubMed ID: 30472524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of alignment changes on socket reaction moments while walking in transtibial prostheses with energy storage and return feet.
    Kobayashi T; Arabian AK; Orendurff MS; Rosenbaum-Chou TG; Boone DA
    Clin Biomech (Bristol, Avon); 2014 Jan; 29(1):47-56. PubMed ID: 24315709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of alignment on interface pressure for transtibial amputee during walking.
    Jia X; Suo S; Meng F; Wang R
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):339-43. PubMed ID: 19127605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low-dimensional sagittal-plane forward-dynamic model for asymmetric gait and its application to study the gait of transtibial prosthesis users.
    Srinivasan S; Westervelt ER; Hansen AH
    J Biomech Eng; 2009 Mar; 131(3):031003. PubMed ID: 19154062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transducer-based comparisons of the prosthetic feet used by transtibial amputees for different walking activities: a pilot study.
    Neumann ES; Yalamanchili K; Brink J; Lee JS
    Prosthet Orthot Int; 2012 Jun; 36(2):203-16. PubMed ID: 22344316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot.
    Wolf SI; Alimusaj M; Fradet L; Siegel J; Braatz F
    Clin Biomech (Bristol, Avon); 2009 Dec; 24(10):860-5. PubMed ID: 19744755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception of socket alignment perturbations in amputees with transtibial prostheses.
    Boone DA; Kobayashi T; Chou TG; Arabian AK; Coleman KL; Orendurff MS; Zhang M
    J Rehabil Res Dev; 2012; 49(6):843-53. PubMed ID: 23299256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of kinetic variables during gait in unilateral transtibial amputees.
    Svoboda Z; Janura M; Cabell L; Elfmark M
    Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proper sequence of dynamic alignment in transtibial prosthesis: insight through socket reaction moments.
    Hashimoto H; Kobayashi T; Gao F; Kataoka M
    Sci Rep; 2023 Jan; 13(1):458. PubMed ID: 36627325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of alignment changes on sagittal and coronal socket reaction moment interactions in transtibial prostheses.
    Kobayashi T; Orendurff MS; Zhang M; Boone DA
    J Biomech; 2013 Apr; 46(7):1343-50. PubMed ID: 23499228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical approach to evaluate the fatigue life of monolimb.
    Chen NZ; Lee WC; Zhang M
    Med Eng Phys; 2006 Apr; 28(3):290-6. PubMed ID: 16112888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.