These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22469004)

  • 21. Gene targeting in plants: fingers on the move.
    Kumar S; Allen GC; Thompson WF
    Trends Plant Sci; 2006 Apr; 11(4):159-61. PubMed ID: 16530459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases.
    Carroll D; Beumer KJ; Morton JJ; Bozas A; Trautman JK
    Methods Mol Biol; 2008; 435():63-77. PubMed ID: 18370068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mammalian gene targeting with designed zinc finger nucleases.
    Porteus MH
    Mol Ther; 2006 Feb; 13(2):438-46. PubMed ID: 16169774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TALE nucleases and next generation GM crops.
    Mahfouz MM; Li L
    GM Crops; 2011; 2(2):99-103. PubMed ID: 21865862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directed genome engineering for genome optimization.
    D'Halluin K; Ruiter R
    Int J Dev Biol; 2013; 57(6-8):621-7. PubMed ID: 24166444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Method for Bxb1-mediated site-specific integration in planta.
    Yau YY; Wang Y; Thomson JG; Ow DW
    Methods Mol Biol; 2011; 701():147-66. PubMed ID: 21181529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution.
    Puchta H
    J Exp Bot; 2005 Jan; 56(409):1-14. PubMed ID: 15557293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly efficient endogenous human gene correction using designed zinc-finger nucleases.
    Urnov FD; Miller JC; Lee YL; Beausejour CM; Rock JM; Augustus S; Jamieson AC; Porteus MH; Gregory PD; Holmes MC
    Nature; 2005 Jun; 435(7042):646-51. PubMed ID: 15806097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of DNA binding of the zinc finger and linkers for domain fusion on the catalytic activity of sequence-specific chimeric recombinases determined by a facile fluorescent system.
    Nomura W; Masuda A; Ohba K; Urabe A; Ito N; Ryo A; Yamamoto N; Tamamura H
    Biochemistry; 2012 Feb; 51(7):1510-7. PubMed ID: 22304662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial DNA cutters for DNA manipulation and genome engineering.
    Aiba Y; Sumaoka J; Komiyama M
    Chem Soc Rev; 2011 Dec; 40(12):5657-68. PubMed ID: 21566825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-specific gene integration in rice genome mediated by the FLP-FRT recombination system.
    Nandy S; Srivastava V
    Plant Biotechnol J; 2011 Aug; 9(6):713-21. PubMed ID: 21083801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient gene targeting and removal of foreign DNA by homologous recombination in the picoeukaryote Ostreococcus.
    Lozano JC; Schatt P; Botebol H; Vergé V; Lesuisse E; Blain S; Carré IA; Bouget FY
    Plant J; 2014 Jun; 78(6):1073-83. PubMed ID: 24698018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prospects for the precise engineering of plant genomes by homologous recombination.
    Mengiste T; Paszkowski J
    Biol Chem; 1999; 380(7-8):749-58. PubMed ID: 10494824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction.
    Kolb AF; Coates CJ; Kaminski JM; Summers JB; Miller AD; Segal DJ
    Trends Biotechnol; 2005 Aug; 23(8):399-406. PubMed ID: 15982766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Creating zinc finger nucleases to manipulate the genome in a site-specific manner using a modular-assembly approach.
    Porteus M
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.top93. PubMed ID: 21123434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools.
    Coates CJ; Kaminski JM; Summers JB; Segal DJ; Miller AD; Kolb AF
    Trends Biotechnol; 2005 Aug; 23(8):407-19. PubMed ID: 15993503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Arabidopsis genome: a foundation for plant research.
    Bevan M; Walsh S
    Genome Res; 2005 Dec; 15(12):1632-42. PubMed ID: 16339360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural analyses of the genomes in legumes.
    Sato S; Isobe S; Tabata S
    Curr Opin Plant Biol; 2010 Apr; 13(2):146-52. PubMed ID: 20071214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Plant transient expression system in functional genomics].
    Wang HZ; Chen YP; Chen PD
    Sheng Wu Gong Cheng Xue Bao; 2007 May; 23(3):367-74. PubMed ID: 17577977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homologous recombination: a basis for targeted genome optimization in crop species such as maize.
    D'Halluin K; Vanderstraeten C; Stals E; Cornelissen M; Ruiter R
    Plant Biotechnol J; 2008 Jan; 6(1):93-102. PubMed ID: 17999657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.