BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22469871)

  • 1. Long-term storage and impedance-based water toxicity testing capabilities of fluidic biochips seeded with RTgill-W1 cells.
    Brennan LM; Widder MW; Lee LE; van der Schalie WH
    Toxicol In Vitro; 2012 Aug; 26(5):736-45. PubMed ID: 22469871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity.
    Brennan LM; Widder MW; McAleer MK; Mayo MW; Greis AP; van der Schalie WH
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip.
    Widder MW; Brennan LM; Hanft EA; Schrock ME; James RR; van der Schalie WH
    J Appl Toxicol; 2015 Jul; 35(7):701-8. PubMed ID: 25231170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A portable cell-based impedance sensor for toxicity testing of drinking water.
    Curtis TM; Widder MW; Brennan LM; Schwager SJ; van der Schalie WH; Fey J; Salazar N
    Lab Chip; 2009 Aug; 9(15):2176-83. PubMed ID: 19606294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved cell sensitivity and longevity in a rapid impedance-based toxicity sensor.
    Curtis TM; Tabb J; Romeo L; Schwager SJ; Widder MW; van der Schalie WH
    J Appl Toxicol; 2009 Jul; 29(5):374-80. PubMed ID: 19267359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suitability of invertebrate and vertebrate cells in a portable impedance-based toxicity sensor: temperature mediated impacts on long-term survival.
    Curtis TM; Collins AM; Gerlach BD; Brennan LM; Widder MW; van der Schalie WH; Vo NT; Bols NC
    Toxicol In Vitro; 2013 Oct; 27(7):2061-6. PubMed ID: 23891577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ammonia-containing industrial effluents, lethal to rainbow trout, induce vacuolisation and Neutral Red uptake in the rainbow trout gill cell line, RTgill-W1.
    Dayeh VR; Schirmer K; Bols NC
    Altern Lab Anim; 2009 Feb; 37(1):77-87. PubMed ID: 19292578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity testing.
    Glawdel T; Elbuken C; Lee LE; Ren CL
    Lab Chip; 2009 Nov; 9(22):3243-50. PubMed ID: 19865731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular uptake and intracellular localization of poly (acrylic acid) nanoparticles in a rainbow trout (Oncorhynchus mykiss) gill epithelial cell line, RTgill-W1.
    Felix LC; Ortega VA; Goss GG
    Aquat Toxicol; 2017 Nov; 192():58-68. PubMed ID: 28917946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Class-A scavenger receptor function and expression in the rainbow trout (Oncorhynchus mykiss) epithelial cell lines RTgutGC and RTgill-W1.
    Poynter SJ; Weleff J; Soares AB; DeWitte-Orr SJ
    Fish Shellfish Immunol; 2015 May; 44(1):138-46. PubMed ID: 25655333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium.
    Yue Y; Behra R; Sigg L; Schirmer K
    Nanotoxicology; 2016 Oct; 10(8):1075-83. PubMed ID: 27030289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High yield and rapid growth of Neoparamoeba pemaquidensis in co-culture with a rainbow trout gill-derived cell line RTgill-W1.
    Lee LE; Van Es SJ; Walsh SK; Rainnie DJ; Donay N; Summerfield R; Cawthorn RJ
    J Fish Dis; 2006 Aug; 29(8):467-80. PubMed ID: 16911534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of the RTgill-W1 Cell Line for Acute Whole-Effluent Toxicity Testing: In Vitro-In Vivo Correlation and Optimization of Exposure Conditions.
    Scott J; Belden JB; Minghetti M
    Environ Toxicol Chem; 2021 Apr; 40(4):1050-1061. PubMed ID: 33617022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay.
    Hondroulis E; Liu C; Li CZ
    Nanotechnology; 2010 Aug; 21(31):315103. PubMed ID: 20622302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transepithelial resistance and claudin expression in trout RTgill-W1 cell line: effects of osmoregulatory hormones.
    Trubitt RT; Rabeneck DB; Bujak JK; Bossus MC; Madsen SS; Tipsmark CK
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Apr; 182():45-52. PubMed ID: 25490293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of a battery of rapid toxicity sensors for drinking water evaluation.
    van der Schalie WH; James RR; Gargan TP
    Biosens Bioelectron; 2006 Jul; 22(1):18-27. PubMed ID: 16406499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lab-on-chip cell-based biosensor for label-free sensing of water toxicants.
    Liu F; Nordin AN; Li F; Voiculescu I
    Lab Chip; 2014 Apr; 14(7):1270-80. PubMed ID: 24463940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line.
    Kühnel D; Busch W; Meissner T; Springer A; Potthoff A; Richter V; Gelinsky M; Scholz S; Schirmer K
    Aquat Toxicol; 2009 Jun; 93(2-3):91-9. PubMed ID: 19439373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition.
    Yue Y; Behra R; Sigg L; Fernández Freire P; Pillai S; Schirmer K
    Nanotoxicology; 2015 Feb; 9(1):54-63. PubMed ID: 24621324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper-induced oxidative stress in rainbow trout gill cells.
    Bopp SK; Abicht HK; Knauer K
    Aquat Toxicol; 2008 Jan; 86(2):197-204. PubMed ID: 18063143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.