These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 22470058)
1. Arabidopsis P-protein filament formation requires both AtSEOR1 and AtSEOR2. Anstead JA; Froelich DR; Knoblauch M; Thompson GA Plant Cell Physiol; 2012 Jun; 53(6):1033-42. PubMed ID: 22470058 [TBL] [Abstract][Full Text] [Related]
2. Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1. Pegadaraju V; Louis J; Singh V; Reese JC; Bautor J; Feys BJ; Cook G; Parker JE; Shah J Plant J; 2007 Oct; 52(2):332-41. PubMed ID: 17725549 [TBL] [Abstract][Full Text] [Related]
3. Filamentous sieve element proteins are able to limit phloem mass flow, but not phytoplasma spread. Pagliari L; Buoso S; Santi S; Furch ACU; Martini M; Degola F; Loschi A; van Bel AJE; Musetti R J Exp Bot; 2017 Jun; 68(13):3673-3688. PubMed ID: 28859375 [TBL] [Abstract][Full Text] [Related]
4. Antibiosis against the green peach aphid requires the Arabidopsis thaliana MYZUS PERSICAE-INDUCED LIPASE1 gene. Louis J; Lorenc-Kukula K; Singh V; Reese J; Jander G; Shah J Plant J; 2010 Dec; 64(5):800-11. PubMed ID: 21105927 [TBL] [Abstract][Full Text] [Related]
5. Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Divol F; Vilaine F; Thibivilliers S; Kusiak C; Sauge MH; Dinant S Plant Cell Environ; 2007 Feb; 30(2):187-201. PubMed ID: 17238910 [TBL] [Abstract][Full Text] [Related]
6. AtMYB44 regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defences in Arabidopsis. Lü BB; Li XJ; Sun WW; Li L; Gao R; Zhu Q; Tian SM; Fu MQ; Yu HL; Tang XM; Zhang CL; Dong HS Plant Biol (Stuttg); 2013 Sep; 15(5):841-50. PubMed ID: 23656500 [TBL] [Abstract][Full Text] [Related]
7. Loss of XRN4 function can trigger cosuppression in a sequence-dependent manner. Hayashi M; Nanba C; Saito M; Kondo M; Takeda A; Watanabe Y; Nishimura M Plant Cell Physiol; 2012 Jul; 53(7):1310-21. PubMed ID: 22611176 [TBL] [Abstract][Full Text] [Related]
8. Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Stadler R; Wright KM; Lauterbach C; Amon G; Gahrtz M; Feuerstein A; Oparka KJ; Sauer N Plant J; 2005 Jan; 41(2):319-31. PubMed ID: 15634207 [TBL] [Abstract][Full Text] [Related]
9. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. Zhang C; Shi H; Chen L; Wang X; Lü B; Zhang S; Liang Y; Liu R; Qian J; Sun W; You Z; Dong H BMC Plant Biol; 2011 Jan; 11():11. PubMed ID: 21226963 [TBL] [Abstract][Full Text] [Related]
10. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Corbesier L; Vincent C; Jang S; Fornara F; Fan Q; Searle I; Giakountis A; Farrona S; Gissot L; Turnbull C; Coupland G Science; 2007 May; 316(5827):1030-3. PubMed ID: 17446353 [TBL] [Abstract][Full Text] [Related]
11. HrpN Ea-induced deterrent effect on phloem feeding of the green peach aphid Myzus persicae requires AtGSL5 and AtMYB44 genes in Arabidopsis thaliana. Lü B; Sun W; Zhang S; Zhang C; Qian J; Wang X; Gao R; Dong H J Biosci; 2011 Mar; 36(1):123-37. PubMed ID: 21451254 [TBL] [Abstract][Full Text] [Related]
12. The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. Mukhtar MS; Deslandes L; Auriac MC; Marco Y; Somssich IE Plant J; 2008 Dec; 56(6):935-47. PubMed ID: 18702671 [TBL] [Abstract][Full Text] [Related]
13. Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Wang YS; Motes CM; Mohamalawari DR; Blancaflor EB Cell Motil Cytoskeleton; 2004 Oct; 59(2):79-93. PubMed ID: 15362112 [TBL] [Abstract][Full Text] [Related]
14. CRUMPLED LEAF (CRL) homologs of Physcomitrella patens are involved in the complete separation of dividing plastids. Sugita C; Kato Y; Yoshioka Y; Tsurumi N; Iida Y; Machida Y; Sugita M Plant Cell Physiol; 2012 Jun; 53(6):1124-33. PubMed ID: 22514088 [TBL] [Abstract][Full Text] [Related]
15. Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Dräger DB; Desbrosses-Fonrouge AG; Krach C; Chardonnens AN; Meyer RC; Saumitou-Laprade P; Krämer U Plant J; 2004 Aug; 39(3):425-39. PubMed ID: 15255871 [TBL] [Abstract][Full Text] [Related]
16. NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Xu XM; Rose A; Muthuswamy S; Jeong SY; Venkatakrishnan S; Zhao Q; Meier I Plant Cell; 2007 May; 19(5):1537-48. PubMed ID: 17513499 [TBL] [Abstract][Full Text] [Related]
17. Feeding on Leaves of the Glucosinolate Transporter Mutant gtr1gtr2 Reduces Fitness of Myzus persicae. Madsen SR; Kunert G; Reichelt M; Gershenzon J; Halkier BA J Chem Ecol; 2015 Nov; 41(11):975-84. PubMed ID: 26511863 [TBL] [Abstract][Full Text] [Related]
18. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. De Vos M; Jander G Plant Cell Environ; 2009 Nov; 32(11):1548-60. PubMed ID: 19558622 [TBL] [Abstract][Full Text] [Related]