These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22470367)

  • 1. A Multiscale Approach to Blast Neurotrauma Modeling: Part I - Development of Novel Test Devices for in vivo and in vitro Blast Injury Models.
    Panzer MB; Matthews KA; Yu AW; Morrison B; Meaney DF; Bass CR
    Front Neurol; 2012; 3():46. PubMed ID: 22470367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multiscale Approach to Blast Neurotrauma Modeling: Part II: Methodology for Inducing Blast Injury to in vitro Models.
    Effgen GB; Hue CD; Vogel E; Panzer MB; Meaney DF; Bass CR; Morrison B
    Front Neurol; 2012; 3():23. PubMed ID: 22375134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.
    Reneer DV; Hisel RD; Hoffman JM; Kryscio RJ; Lusk BT; Geddes JW
    J Neurotrauma; 2011 Jan; 28(1):95-104. PubMed ID: 21083431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and characterization of an open-ended shock tube for the study of blast mtbi.
    Shah Ms AS; Stemper Phd BD; Pintar Phd FA
    Biomed Sci Instrum; 2012; 48():393-400. PubMed ID: 22846311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porcine head response to blast.
    Shridharani JK; Wood GW; Panzer MB; Capehart BP; Nyein MK; Radovitzky RA; Bass CR
    Front Neurol; 2012; 3():70. PubMed ID: 22586417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of driver gas composition on production of scaled Friedlander waveforms in an open-ended shock tube model.
    Reeder EL; Liber ML; Traubert OD; O'Connell CJ; Turner RC; Robson MJ
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36252558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rat injury model under controlled field-relevant primary blast conditions: acute response to a wide range of peak overpressures.
    Skotak M; Wang F; Alai A; Holmberg A; Harris S; Switzer RC; Chandra N
    J Neurotrauma; 2013 Jul; 30(13):1147-60. PubMed ID: 23362798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube.
    Sundaramurthy A; Chandra N
    Front Neurol; 2014; 5():253. PubMed ID: 25520701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane characteristics for biological blast overpressure testing using blast simulators.
    Alphonse VD; Siva Sai Sujith Sajja V; Kemper AR; Rizel DV; Duma SM; VandeVord PJ
    Biomed Sci Instrum; 2014; 50():248-53. PubMed ID: 25405432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a controlled shock wave delivered by a pneumatic table-top gas driven shock tube.
    Swietek B; Skotak M; Chandra N; Pfister BJ
    Rev Sci Instrum; 2019 Jul; 90(7):075116. PubMed ID: 31370428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Compression Driven Shock Tube Designs in Replicating Free-Field Blast Conditions for Traumatic Brain Injury Studies.
    Sutar S; Ganpule SG
    J Neurotrauma; 2021 Jun; 38(12):1717-1729. PubMed ID: 33108952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.
    Kuriakose M; Skotak M; Misistia A; Kahali S; Sundaramurthy A; Chandra N
    PLoS One; 2016; 11(9):e0161597. PubMed ID: 27603017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model.
    Sundaramurthy A; Alai A; Ganpule S; Holmberg A; Plougonven E; Chandra N
    J Neurotrauma; 2012 Sep; 29(13):2352-64. PubMed ID: 22620716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localizing Clinical Patterns of Blast Traumatic Brain Injury Through Computational Modeling and Simulation.
    Miller ST; Cooper CF; Elsbernd P; Kerwin J; Mejia-Alvarez R; Willis AM
    Front Neurol; 2021; 12():547655. PubMed ID: 34093380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral Vasculature Influences Blast-Induced Biomechanical Responses of Human Brain Tissue.
    Subramaniam DR; Unnikrishnan G; Sundaramurthy A; Rubio JE; Kote VB; Reifman J
    Front Bioeng Biotechnol; 2021; 9():744808. PubMed ID: 34805106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury.
    Gullotti DM; Beamer M; Panzer MB; Chen YC; Patel TP; Yu A; Jaumard N; Winkelstein B; Bass CR; Morrison B; Meaney DF
    J Biomech Eng; 2014 Sep; 136(9):091004. PubMed ID: 24950710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolated primary blast alters neuronal function with minimal cell death in organotypic hippocampal slice cultures.
    Effgen GB; Vogel EW; Lynch KA; Lobel A; Hue CD; Meaney DF; Bass CR; Morrison B
    J Neurotrauma; 2014 Jul; 31(13):1202-10. PubMed ID: 24558968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a finite element model for blast brain injury and the effects of CSF cavitation.
    Panzer MB; Myers BS; Capehart BP; Bass CR
    Ann Biomed Eng; 2012 Jul; 40(7):1530-44. PubMed ID: 22298329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling clinically relevant blast parameters based on scaling principles produces functional & histological deficits in rats.
    Turner RC; Naser ZJ; Logsdon AF; DiPasquale KH; Jackson GJ; Robson MJ; Gettens RT; Matsumoto RR; Huber JD; Rosen CL
    Exp Neurol; 2013 Oct; 248():520-9. PubMed ID: 23876514
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.