BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22470421)

  • 41. A major role for capsule-independent phagocytosis-inhibitory mechanisms in mammalian infection by Cryptococcus neoformans.
    Chun CD; Brown JCS; Madhani HD
    Cell Host Microbe; 2011 Mar; 9(3):243-251. PubMed ID: 21402362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Transcription Factor Pdr802 Regulates Titan Cell Formation and Pathogenicity of Cryptococcus neoformans.
    Reuwsaat JCV; Agustinho DP; Motta H; Chang AL; Brown H; Brent MR; Kmetzsch L; Doering TL
    mBio; 2021 Mar; 12(2):. PubMed ID: 33688010
    [No Abstract]   [Full Text] [Related]  

  • 43. Elongation factor 3, EF3, associates with the calcium channel Cch1 and targets Cch1 to the plasma membrane in Cryptococcus neoformans.
    Liu M; Gelli A
    Eukaryot Cell; 2008 Jul; 7(7):1118-26. PubMed ID: 18503003
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Monothiol Glutaredoxin Grx4 Regulates Iron Homeostasis and Virulence in Cryptococcus neoformans.
    Attarian R; Hu G; Sánchez-León E; Caza M; Croll D; Do E; Bach H; Missall T; Lodge J; Jung WH; Kronstad JW
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514787
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation.
    Feller A; Georis I; Tate JJ; Cooper TG; Dubois E
    J Biol Chem; 2013 Jan; 288(3):1841-55. PubMed ID: 23184930
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans.
    Görlach J; Fox DS; Cutler NS; Cox GM; Perfect JR; Heitman J
    EMBO J; 2000 Jul; 19(14):3618-29. PubMed ID: 10899116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two distinct protein-protein interactions between the NIT2 and NMR regulatory proteins are required to establish nitrogen metabolite repression in Neurospora crassa.
    Pan H; Feng B; Marzluf GA
    Mol Microbiol; 1997 Nov; 26(4):721-9. PubMed ID: 9427402
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Requirement of the isocitrate lyase gene ICL1 for VPS41-mediated starvation response in Cryptococcus neoformans.
    Xu Z; Zhi Y; Dong J; Lin B; Ye D; Liu X
    J Microbiol; 2016 Jul; 54(7):487-91. PubMed ID: 27350614
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights into Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR.
    Schönig B; Brown DW; Oeser B; Tudzynski B
    Eukaryot Cell; 2008 Oct; 7(10):1831-46. PubMed ID: 18689524
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway.
    Chen X; Wang Z; Guo X; Liu S; He X
    J Biotechnol; 2017 Jan; 242():83-91. PubMed ID: 27908775
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR.
    Mihlan M; Homann V; Liu TW; Tudzynski B
    Mol Microbiol; 2003 Feb; 47(4):975-91. PubMed ID: 12581353
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae.
    Coffman JA; Cooper TG
    J Bacteriol; 1997 Sep; 179(17):5609-13. PubMed ID: 9287023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrogen-dependent calcineurin activation in the yeast Hansenula polymorpha.
    Rodríguez C; Galindo LR; Siverio JM
    Fungal Genet Biol; 2013 Apr; 53():34-41. PubMed ID: 23403359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitrogen regulation of virulence in clinically prevalent fungal pathogens.
    Lee IR; Morrow CA; Fraser JA
    FEMS Microbiol Lett; 2013 Aug; 345(2):77-84. PubMed ID: 23701678
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae.
    André B; Talibi D; Soussi Boudekou S; Hein C; Vissers S; Coornaert D
    Nucleic Acids Res; 1995 Feb; 23(4):558-64. PubMed ID: 7899075
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Morphotype-specific effector functions of Cryptococcus neoformans PUM1.
    Kaur JN; Panepinto JC
    Sci Rep; 2016 Mar; 6():23638. PubMed ID: 27008977
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A transcription factor regulatory cascade controls secreted aspartic protease expression in Candida albicans.
    Dabas N; Morschhäuser J
    Mol Microbiol; 2008 Aug; 69(3):586-602. PubMed ID: 18547391
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.
    Kuruvilla FG; Shamji AF; Schreiber SL
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7283-8. PubMed ID: 11416207
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae.
    Cunningham TS; Andhare R; Cooper TG
    J Biol Chem; 2000 May; 275(19):14408-14. PubMed ID: 10799523
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Iron influences the abundance of the iron regulatory protein Cir1 in the fungal pathogen Cryptococcus neoformans.
    Jung WH; Kronstad JW
    FEBS Lett; 2011 Oct; 585(20):3342-7. PubMed ID: 21963719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.