BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22470984)

  • 1. Excitons and charges at organic semiconductor heterojunctions.
    Friend RH; Phillips M; Rao A; Wilson MW; Li Z; McNeill CR
    Faraday Discuss; 2012; 155():339-48; discussion 349-56. PubMed ID: 22470984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Singlet exciton fission photovoltaics.
    Lee J; Jadhav P; Reusswig PD; Yost SR; Thompson NJ; Congreve DN; Hontz E; Van Voorhis T; Baldo MA
    Acc Chem Res; 2013 Jun; 46(6):1300-11. PubMed ID: 23611026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers.
    Rao A; Wilson MW; Hodgkiss JM; Albert-Seifried S; Bässler H; Friend RH
    J Am Chem Soc; 2010 Sep; 132(36):12698-703. PubMed ID: 20735067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of spin in the kinetic control of recombination in organic photovoltaics.
    Rao A; Chow PC; Gélinas S; Schlenker CW; Li CZ; Yip HL; Jen AK; Ginger DS; Friend RH
    Nature; 2013 Aug; 500(7463):435-9. PubMed ID: 23925118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier Dynamics of Efficient Triplet Harvesting in AgBiS
    Geng P; Chen D; Shivarudraiah SB; Chen X; Guo L; Halpert JE
    Adv Sci (Weinh); 2023 May; 10(13):e2300177. PubMed ID: 36938855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells.
    Han G; Yi Y
    Acc Chem Res; 2022 Mar; 55(6):869-877. PubMed ID: 35230078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Charge-Transfer State Energy on Charge Generation Efficiency via Singlet Fission in Pentacene-Fullerene Solar Cells.
    Willems REM; Meskers SCJ; Wienk MM; Janssen RAJ
    J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(16):10253-10261. PubMed ID: 31049121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder.
    Zheng Z; Tummala NR; Fu YT; Coropceanu V; Brédas JL
    ACS Appl Mater Interfaces; 2017 May; 9(21):18095-18102. PubMed ID: 28481497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry.
    Yi Y; Coropceanu V; Brédas JL
    J Am Chem Soc; 2009 Nov; 131(43):15777-83. PubMed ID: 19810727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge recombination in organic photovoltaic devices with high open-circuit voltages.
    Westenhoff S; Howard IA; Hodgkiss JM; Kirov KR; Bronstein HA; Williams CK; Greenham NC; Friend RH
    J Am Chem Soc; 2008 Oct; 130(41):13653-8. PubMed ID: 18798623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.
    Wilson MW; Rao A; Ehrler B; Friend RH
    Acc Chem Res; 2013 Jun; 46(6):1330-8. PubMed ID: 23656886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coulomb barrier for charge separation at an organic semiconductor interface.
    Muntwiler M; Yang Q; Tisdale WA; Zhu XY
    Phys Rev Lett; 2008 Nov; 101(19):196403. PubMed ID: 19113289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer triplet energy levels need not limit photocurrent collection in organic solar cells.
    Schlenker CW; Chen KS; Yip HL; Li CZ; Bradshaw LR; Ochsenbein ST; Ding F; Li XS; Gamelin DR; Jen AK; Ginger DS
    J Am Chem Soc; 2012 Dec; 134(48):19661-8. PubMed ID: 23126491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics.
    Jailaubekov AE; Willard AP; Tritsch JR; Chan WL; Sai N; Gearba R; Kaake LG; Williams KJ; Leung K; Rossky PJ; Zhu XY
    Nat Mater; 2013 Jan; 12(1):66-73. PubMed ID: 23223125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barrier-Free Charge Separation Enabled by Electronic Polarization in High-Efficiency Non-fullerene Organic Solar Cells.
    Tu Z; Han G; Yi Y
    J Phys Chem Lett; 2020 Apr; 11(7):2585-2591. PubMed ID: 32163716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge recombination and exciton annihilation reactions in conjugated polymer blends.
    Howard IA; Hodgkiss JM; Zhang X; Kirov KR; Bronstein HA; Williams CK; Friend RH; Westenhoff S; Greenham NC
    J Am Chem Soc; 2010 Jan; 132(1):328-35. PubMed ID: 19961228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of charge recombination to triplet excitons in organic solar cells.
    Gillett AJ; Privitera A; Dilmurat R; Karki A; Qian D; Pershin A; Londi G; Myers WK; Lee J; Yuan J; Ko SJ; Riede MK; Gao F; Bazan GC; Rao A; Nguyen TQ; Beljonne D; Friend RH
    Nature; 2021 Sep; 597(7878):666-671. PubMed ID: 34588666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast Long-Range Charge Separation in Nonfullerene Organic Solar Cells.
    Tamai Y; Fan Y; Kim VO; Ziabrev K; Rao A; Barlow S; Marder SR; Friend RH; Menke SM
    ACS Nano; 2017 Dec; 11(12):12473-12481. PubMed ID: 29148715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.