BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 22471323)

  • 1. Ligand aligning method for molecular docking: alignment of property-weighted vectors.
    Joung JY; Nam KY; Cho KH; No KT
    J Chem Inf Model; 2012 Apr; 52(4):984-95. PubMed ID: 22471323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling.
    Meslamani J; Li J; Sutter J; Stevens A; Bertrand HO; Rognan D
    J Chem Inf Model; 2012 Apr; 52(4):943-55. PubMed ID: 22480372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design.
    Du QS; Gao J; Wei YT; Du LQ; Wang SQ; Huang RB
    J Chem Inf Model; 2012 Apr; 52(4):996-1004. PubMed ID: 22480344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a rule-based method for the assessment of protein druggability.
    Perola E; Herman L; Weiss J
    J Chem Inf Model; 2012 Apr; 52(4):1027-38. PubMed ID: 22448735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors.
    Sato T; Yuki H; Takaya D; Sasaki S; Tanaka A; Honma T
    J Chem Inf Model; 2012 Apr; 52(4):1015-26. PubMed ID: 22424085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extensive and diverse set of molecular overlays for the validation of pharmacophore programs.
    Giangreco I; Cosgrove DA; Packer MJ
    J Chem Inf Model; 2013 Apr; 53(4):852-66. PubMed ID: 23565904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based virtual screening for novel ligands.
    Pitt WR; Calmiano MD; Kroeplien B; Taylor RD; Turner JP; King MA
    Methods Mol Biol; 2013; 1008():501-19. PubMed ID: 23729265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DOLINA--docking based on a local induced-fit algorithm: application toward small-molecule binding to nuclear receptors.
    Smieško M
    J Chem Inf Model; 2013 Jun; 53(6):1415-23. PubMed ID: 23725336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementarity between in silico and biophysical screening approaches in fragment-based lead discovery against the A(2A) adenosine receptor.
    Chen D; Ranganathan A; IJzerman AP; Siegal G; Carlsson J
    J Chem Inf Model; 2013 Oct; 53(10):2701-14. PubMed ID: 23971943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular fields in ligand discovery.
    Gane PJ; Chan AW
    Methods Mol Biol; 2013; 1008():479-99. PubMed ID: 23729264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of MM-PBSA rescoring of docking poses.
    Thompson DC; Humblet C; Joseph-McCarthy D
    J Chem Inf Model; 2008 May; 48(5):1081-91. PubMed ID: 18465849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study on the use of docking and Bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes.
    Kombo DC; Bencherif M
    J Chem Inf Model; 2013 Dec; 53(12):3212-22. PubMed ID: 24328365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.
    Estrada T; Zhang B; Cicotti P; Armen RS; Taufer M
    Comput Biol Med; 2012 Jul; 42(7):758-71. PubMed ID: 22658682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A python-based docking program utilizing a receptor bound ligand shape: PythDock.
    Chung JY; Cho SJ; Hah JM
    Arch Pharm Res; 2011 Sep; 34(9):1451-8. PubMed ID: 21975806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An example of a protein ligand found by database mining: description of the docking method and its verification by a 2.3 A X-ray structure of a thrombin-ligand complex.
    Burkhard P; Taylor P; Walkinshaw MD
    J Mol Biol; 1998 Mar; 277(2):449-66. PubMed ID: 9514757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational automatic search method for stable docking models of protein and ligand.
    Mizutani MY; Tomioka N; Itai A
    J Mol Biol; 1994 Oct; 243(2):310-26. PubMed ID: 7932757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.