BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22471442)

  • 1. Computational toxicological investigation on the mechanism and pathways of xenobiotics metabolized by cytochrome P450: a case of BDE-47.
    Wang X; Wang Y; Chen J; Ma Y; Zhou J; Fu Z
    Environ Sci Technol; 2012 May; 46(9):5126-33. PubMed ID: 22471442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation pathways of MeO-PBDEs catalyzed by active center of P450 enzymes: a DFT investigation employing 6-MeO-BDE-47 as a case.
    Wang X; Chen J; Wang Y; Xie H; Fu Z
    Chemosphere; 2015 Feb; 120():631-6. PubMed ID: 25462307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative oxidative metabolism of BDE-47 and BDE-99 by rat hepatic microsomes.
    Erratico CA; Moffatt SC; Bandiera SM
    Toxicol Sci; 2011 Sep; 123(1):37-47. PubMed ID: 21673328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of polybrominated diphenyl ethers and tetrabromobisphenol A by fish liver subcellular fractions in vitro.
    Shen M; Cheng J; Wu R; Zhang S; Mao L; Gao S
    Aquat Toxicol; 2012 Jun; 114-115():73-9. PubMed ID: 22417763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How PBDEs Are Transformed into Dihydroxylated and Dioxin Metabolites Catalyzed by the Active Center of Cytochrome P450s: A DFT Study.
    Fu Z; Wang Y; Chen J; Wang Z; Wang X
    Environ Sci Technol; 2016 Aug; 50(15):8155-63. PubMed ID: 27363260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the metabolic mechanism of PBDEs catalyzed by cytochrome P450 enzyme 3A4: A QM/MM study.
    Zhang R; Li P; Shi X; Zhang R; Wang J; Li Y; Zhang Q; Wang W
    Chemosphere; 2021 Sep; 278():130430. PubMed ID: 33836398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47).
    Hamers T; Kamstra JH; Sonneveld E; Murk AJ; Visser TJ; Van Velzen MJ; Brouwer A; Bergman A
    Mol Nutr Food Res; 2008 Feb; 52(2):284-98. PubMed ID: 18161906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interconversion of hydroxylated and methoxylated polybrominated diphenyl ethers in Japanese medaka.
    Wan Y; Liu F; Wiseman S; Zhang X; Chang H; Hecker M; Jones PD; Lam MH; Giesy JP
    Environ Sci Technol; 2010 Nov; 44(22):8729-35. PubMed ID: 20973477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation pathways of isomeric perfluorooctanesulfonate precursors catalyzed by the active species of P450 enzymes: in silico investigation.
    Fu Z; Wang Y; Wang Z; Xie H; Chen J
    Chem Res Toxicol; 2015 Mar; 28(3):482-9. PubMed ID: 25549022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation.
    Zhang J; Ji L; Liu W
    Chem Res Toxicol; 2015 Aug; 28(8):1522-31. PubMed ID: 26200167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pragmatic approach using first-principle methods to address site of metabolism with implications for reactive metabolite formation.
    Hsiao YW; Petersson C; Svensson MA; Norinder U
    J Chem Inf Model; 2012 Mar; 52(3):686-95. PubMed ID: 22299574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biotransformation in occupational medicine: the role of hepatic cytochrome P-450 in the mechanism of action and the biological monitoring of occupational toxic compounds].
    Manno M; Saia B
    Med Lav; 1994; 85(1):11-21. PubMed ID: 8035741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of hydroxylated metabolites in 2,2',4,4'-tetrabromodiphenyl ether exposed rats.
    Marsh G; Athanasiadou M; Athanassiadis I; Sandholm A
    Chemosphere; 2006 Apr; 63(4):690-7. PubMed ID: 16213553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Role of human cytochrome P-450 enzymes in the metabolism of xenobiotics].
    Monostory K; Vereczkey L
    Acta Pharm Hung; 1995 Sep; 65(5):147-56. PubMed ID: 7484161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P450 pharmacogenetics and cancer.
    Rodriguez-Antona C; Ingelman-Sundberg M
    Oncogene; 2006 Mar; 25(11):1679-91. PubMed ID: 16550168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of the N-hydroxylation of primary and secondary amines by cytochrome P450.
    Seger ST; Rydberg P; Olsen L
    Chem Res Toxicol; 2015 Apr; 28(4):597-603. PubMed ID: 25651340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism and structure-reactivity relationships for aromatic hydroxylation by cytochrome P450.
    Bathelt CM; Ridder L; Mulholland AJ; Harvey JN
    Org Biomol Chem; 2004 Oct; 2(20):2998-3005. PubMed ID: 15480465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in predicted chemoselectivity of cytochrome P450 oxidation: B3LYP barrier heights for epoxidation and hydroxylation reactions.
    Rydberg P; Lonsdale R; Harvey JN; Mulholland AJ; Olsen L
    J Mol Graph Model; 2014 Jul; 52():30-5. PubMed ID: 25000094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity for the epoxidation of terpenoids and active site topology of house fly cytochrome P450 6A1.
    Andersen JF; Walding JK; Evans PH; Bowers WS; Feyereisen R
    Chem Res Toxicol; 1997 Feb; 10(2):156-64. PubMed ID: 9049426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.