BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22471523)

  • 1. Role of carotenoid β-cryptoxanthin in bone homeostasis.
    Yamaguchi M
    J Biomed Sci; 2012 Apr; 19(1):36. PubMed ID: 22471523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis.
    Yamaguchi M
    Yakugaku Zasshi; 2006 Nov; 126(11):1117-37. PubMed ID: 17077614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutritional factors and bone homeostasis: synergistic effect with zinc and genistein in osteogenesis.
    Yamaguchi M
    Mol Cell Biochem; 2012 Jul; 366(1-2):201-21. PubMed ID: 22476903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. beta-Cryptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro.
    Yamaguchi M; Uchiyama S
    Mol Cell Biochem; 2004 Mar; 258(1-2):137-44. PubMed ID: 15030178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bone anabolic carotenoid beta-cryptoxanthin enhances transforming growth factor-beta1-induced SMAD activation in MC3T3 preosteoblasts.
    Yamaguchi M; Weitzmann MN
    Int J Mol Med; 2009 Nov; 24(5):671-5. PubMed ID: 19787201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral administration of beta-cryptoxanthin prevents bone loss in ovariectomized rats.
    Uchiyama S; Yamaguchi M
    Int J Mol Med; 2006 Jan; 17(1):15-20. PubMed ID: 16328006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Daily intake of β-cryptoxanthin prevents bone loss by preferential disturbance of osteoclastic activation in ovariectomized mice.
    Ozaki K; Okamoto M; Fukasawa K; Iezaki T; Onishi Y; Yoneda Y; Sugiura M; Hinoi E
    J Pharmacol Sci; 2015 Sep; 129(1):72-7. PubMed ID: 26342276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta-cryptoxanthin stimulates apoptotic cell death and suppresses cell function in osteoclastic cells: change in their related gene expression.
    Uchiyama S; Yamaguchi M
    J Cell Biochem; 2006 Aug; 98(5):1185-95. PubMed ID: 16514646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of beta-cryptoxanthin and zinc has potent effects on apoptotic cell death and suppression of bone resorption-related gene expression in osteoclastic cells.
    Yamaguchi M; Uchiyama S
    Int J Mol Med; 2008 Aug; 22(2):221-8. PubMed ID: 18636177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. beta-Cryptoxanthin stimulates cell proliferation and transcriptional activity in osteoblastic MC3T3-E1 cells.
    Uchiyama S; Yamaguchi M
    Int J Mol Med; 2005 Apr; 15(4):675-81. PubMed ID: 15754031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit.
    Kato M; Ikoma Y; Matsumoto H; Sugiura M; Hyodo H; Yano M
    Plant Physiol; 2004 Feb; 134(2):824-37. PubMed ID: 14739348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect of beta-cryptoxanthin on osteoclast-like cell formation in mouse marrow cultures.
    Uchiyama S; Yamaguchi M
    Biochem Pharmacol; 2004 Apr; 67(7):1297-305. PubMed ID: 15013845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The protective effects of β-cryptoxanthin on inflammatory bone resorption in a mouse experimental model of periodontitis.
    Matsumoto C; Ashida N; Yokoyama S; Tominari T; Hirata M; Ogawa K; Sugiura M; Yano M; Inada M; Miyaura C
    Biosci Biotechnol Biochem; 2013; 77(4):860-2. PubMed ID: 23615426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents.
    Irwig MS; El-Sohemy A; Baylin A; Rifai N; Campos H
    J Nutr; 2002 Oct; 132(10):3161-7. PubMed ID: 12368412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal variation of serum alpha- and beta-cryptoxanthin and 25-OH-vitamin D(3) in women with osteoporosis.
    Granado-Lorencio F; Olmedilla-Alonso B; Herrero-Barbudo C; Blanco-Navarro I; Pérez-Sacristán B
    Osteoporos Int; 2008 May; 19(5):717-20. PubMed ID: 17882465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The botanical molecule p-hydroxycinnamic acid as a new osteogenic agent: insight into the treatment of cancer bone metastases.
    Yamaguchi M
    Mol Cell Biochem; 2016 Oct; 421(1-2):193-203. PubMed ID: 27573001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer chemoprevention by citrus pulp and juices containing high amounts of β-cryptoxanthin and hesperidin.
    Tanaka T; Tanaka T; Tanaka M; Kuno T
    J Biomed Biotechnol; 2012; 2012():516981. PubMed ID: 22174562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic formation of β-citraurin from β-cryptoxanthin and Zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit.
    Ma G; Zhang L; Matsuta A; Matsutani K; Yamawaki K; Yahata M; Wahyudi A; Motohashi R; Kato M
    Plant Physiol; 2013 Oct; 163(2):682-95. PubMed ID: 23966550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin.
    Peng S; Liu XS; Huang S; Li Z; Pan H; Zhen W; Luk KD; Guo XE; Lu WW
    Bone; 2011 Dec; 49(6):1290-8. PubMed ID: 21925296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effect of mandarin juice rich in beta-cryptoxanthin and hesperidin on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced pulmonary tumorigenesis in mice.
    Kohno H; Taima M; Sumida T; Azuma Y; Ogawa H; Tanaka T
    Cancer Lett; 2001 Dec; 174(2):141-50. PubMed ID: 11689289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.