These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 22471523)
1. Role of carotenoid β-cryptoxanthin in bone homeostasis. Yamaguchi M J Biomed Sci; 2012 Apr; 19(1):36. PubMed ID: 22471523 [TBL] [Abstract][Full Text] [Related]
2. Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis. Yamaguchi M Yakugaku Zasshi; 2006 Nov; 126(11):1117-37. PubMed ID: 17077614 [TBL] [Abstract][Full Text] [Related]
3. Nutritional factors and bone homeostasis: synergistic effect with zinc and genistein in osteogenesis. Yamaguchi M Mol Cell Biochem; 2012 Jul; 366(1-2):201-21. PubMed ID: 22476903 [TBL] [Abstract][Full Text] [Related]
4. beta-Cryptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Yamaguchi M; Uchiyama S Mol Cell Biochem; 2004 Mar; 258(1-2):137-44. PubMed ID: 15030178 [TBL] [Abstract][Full Text] [Related]
5. The bone anabolic carotenoid beta-cryptoxanthin enhances transforming growth factor-beta1-induced SMAD activation in MC3T3 preosteoblasts. Yamaguchi M; Weitzmann MN Int J Mol Med; 2009 Nov; 24(5):671-5. PubMed ID: 19787201 [TBL] [Abstract][Full Text] [Related]
6. Oral administration of beta-cryptoxanthin prevents bone loss in ovariectomized rats. Uchiyama S; Yamaguchi M Int J Mol Med; 2006 Jan; 17(1):15-20. PubMed ID: 16328006 [TBL] [Abstract][Full Text] [Related]
7. Daily intake of β-cryptoxanthin prevents bone loss by preferential disturbance of osteoclastic activation in ovariectomized mice. Ozaki K; Okamoto M; Fukasawa K; Iezaki T; Onishi Y; Yoneda Y; Sugiura M; Hinoi E J Pharmacol Sci; 2015 Sep; 129(1):72-7. PubMed ID: 26342276 [TBL] [Abstract][Full Text] [Related]
8. Beta-cryptoxanthin stimulates apoptotic cell death and suppresses cell function in osteoclastic cells: change in their related gene expression. Uchiyama S; Yamaguchi M J Cell Biochem; 2006 Aug; 98(5):1185-95. PubMed ID: 16514646 [TBL] [Abstract][Full Text] [Related]
9. Combination of beta-cryptoxanthin and zinc has potent effects on apoptotic cell death and suppression of bone resorption-related gene expression in osteoclastic cells. Yamaguchi M; Uchiyama S Int J Mol Med; 2008 Aug; 22(2):221-8. PubMed ID: 18636177 [TBL] [Abstract][Full Text] [Related]
10. beta-Cryptoxanthin stimulates cell proliferation and transcriptional activity in osteoblastic MC3T3-E1 cells. Uchiyama S; Yamaguchi M Int J Mol Med; 2005 Apr; 15(4):675-81. PubMed ID: 15754031 [TBL] [Abstract][Full Text] [Related]
11. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Kato M; Ikoma Y; Matsumoto H; Sugiura M; Hyodo H; Yano M Plant Physiol; 2004 Feb; 134(2):824-37. PubMed ID: 14739348 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory effect of beta-cryptoxanthin on osteoclast-like cell formation in mouse marrow cultures. Uchiyama S; Yamaguchi M Biochem Pharmacol; 2004 Apr; 67(7):1297-305. PubMed ID: 15013845 [TBL] [Abstract][Full Text] [Related]
13. The protective effects of β-cryptoxanthin on inflammatory bone resorption in a mouse experimental model of periodontitis. Matsumoto C; Ashida N; Yokoyama S; Tominari T; Hirata M; Ogawa K; Sugiura M; Yano M; Inada M; Miyaura C Biosci Biotechnol Biochem; 2013; 77(4):860-2. PubMed ID: 23615426 [TBL] [Abstract][Full Text] [Related]
14. Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. Irwig MS; El-Sohemy A; Baylin A; Rifai N; Campos H J Nutr; 2002 Oct; 132(10):3161-7. PubMed ID: 12368412 [TBL] [Abstract][Full Text] [Related]
15. Seasonal variation of serum alpha- and beta-cryptoxanthin and 25-OH-vitamin D(3) in women with osteoporosis. Granado-Lorencio F; Olmedilla-Alonso B; Herrero-Barbudo C; Blanco-Navarro I; Pérez-Sacristán B Osteoporos Int; 2008 May; 19(5):717-20. PubMed ID: 17882465 [TBL] [Abstract][Full Text] [Related]
16. The botanical molecule p-hydroxycinnamic acid as a new osteogenic agent: insight into the treatment of cancer bone metastases. Yamaguchi M Mol Cell Biochem; 2016 Oct; 421(1-2):193-203. PubMed ID: 27573001 [TBL] [Abstract][Full Text] [Related]
17. Cancer chemoprevention by citrus pulp and juices containing high amounts of β-cryptoxanthin and hesperidin. Tanaka T; Tanaka T; Tanaka M; Kuno T J Biomed Biotechnol; 2012; 2012():516981. PubMed ID: 22174562 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic formation of β-citraurin from β-cryptoxanthin and Zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit. Ma G; Zhang L; Matsuta A; Matsutani K; Yamawaki K; Yahata M; Wahyudi A; Motohashi R; Kato M Plant Physiol; 2013 Oct; 163(2):682-95. PubMed ID: 23966550 [TBL] [Abstract][Full Text] [Related]
19. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Peng S; Liu XS; Huang S; Li Z; Pan H; Zhen W; Luk KD; Guo XE; Lu WW Bone; 2011 Dec; 49(6):1290-8. PubMed ID: 21925296 [TBL] [Abstract][Full Text] [Related]
20. Inhibitory effect of mandarin juice rich in beta-cryptoxanthin and hesperidin on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced pulmonary tumorigenesis in mice. Kohno H; Taima M; Sumida T; Azuma Y; Ogawa H; Tanaka T Cancer Lett; 2001 Dec; 174(2):141-50. PubMed ID: 11689289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]