BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22471649)

  • 1. Validation of bimanual-coordinated training supported by a new upper-limb rehabilitation robot: a near-infrared spectroscopy study.
    Li C; Inoue Y; Liu T; Sun L
    Disabil Rehabil Assist Technol; 2013 Jan; 8(1):38-48. PubMed ID: 22471649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke.
    Lewis GN; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a bimanual-coordinated upper-limbs training system based on the near infrared spectroscopic signals on brain.
    Li C; Liu T; Inoue Y; Shibata K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6625-8. PubMed ID: 21096728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation.
    Pan L; Song A; Duan S; Xu B
    Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of passive and active training modes of upper-limb rehabilitation robot on cortical activation: a functional near-infrared spectroscopy study.
    Zheng J; Shi P; Fan M; Liang S; Li S; Yu H
    Neuroreport; 2021 Apr; 32(6):479-488. PubMed ID: 33788815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rehabilitation for hemiplegia using an upper limb training system based on a force direction.
    Ogata K; Hirabayashi Y; Kubota K; Hasegawa Y; Tsuji T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():533-538. PubMed ID: 28813875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients.
    Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):311-24. PubMed ID: 16200755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training.
    Liu Y; Li C; Ji L; Bi S; Zhang X; Huo J; Ji R
    J Healthc Eng; 2017; 2017():4931217. PubMed ID: 29065614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training.
    Hu XL; Tong KY; Song R; Zheng XJ; Lui KH; Leung WW; Ng S; Au-Yeung SS
    J Electromyogr Kinesiol; 2009 Aug; 19(4):639-50. PubMed ID: 18490177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation of muscle coactivation patterns in chronic stroke during robot-assisted elbow training.
    Hu X; Tong KY; Song R; Tsang VS; Leung PO; Li L
    Arch Phys Med Rehabil; 2007 Aug; 88(8):1022-9. PubMed ID: 17678665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke.
    Chang JJ; Tung WL; Wu WL; Huang MH; Su FC
    Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards brain-robot interfaces in stroke rehabilitation.
    Gomez-Rodriguez M; Grosse-Wentrup M; Hill J; Gharabaghi A; Scholkopf B; Peters J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975385. PubMed ID: 22275589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetry modes and stiffnesses for bimanual rehabilitation.
    McAmis S; Reed KB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975508. PubMed ID: 22275704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper limb stroke rehabilitation: the effectiveness of Stimulation Assistance through Iterative Learning (SAIL).
    Meadmore KL; Cai Z; Tong D; Hughes AM; Freeman CT; Rogers E; Burridge JH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975502. PubMed ID: 22275698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pilot study on the optimal speeds for passive wrist movements by a rehabilitation robot of stroke patients: A functional NIRS study.
    Bae SJ; Jang SH; Seo JP; Chang PH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():7-12. PubMed ID: 28813785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.