BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22471649)

  • 21. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.
    Mancisidor A; Zubizarreta A; Cabanes I; Bengoa P; Jung JH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():561-566. PubMed ID: 28813879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patient-Centered Robot-Aided Passive Neurorehabilitation Exercise Based on Safety-Motion Decision-Making Mechanism.
    Pan L; Song A; Duan S; Yu Z
    Biomed Res Int; 2017; 2017():4185939. PubMed ID: 28194413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-stroke robotic training of the upper limb in the early rehabilitation phase.
    Masiero S; Rosati G; Valarini S; Rossi A
    Funct Neurol; 2009; 24(4):203-6. PubMed ID: 20412726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy and task structure of bimanual training post stroke: a systematic review.
    Wolf A; Scheiderer R; Napolitan N; Belden C; Shaub L; Whitford M
    Top Stroke Rehabil; 2014; 21(3):181-96. PubMed ID: 24985386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects.
    Sheng B; Zhang Y; Meng W; Deng C; Xie S
    Med Eng Phys; 2016 Jul; 38(7):587-606. PubMed ID: 27117423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asymmetric training using virtual reality reflection equipment and the enhancement of upper limb function in stroke patients: a randomized controlled trial.
    Lee D; Lee M; Lee K; Song C
    J Stroke Cerebrovasc Dis; 2014 Jul; 23(6):1319-26. PubMed ID: 24468068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of visual error augmentation when integrated with assist-as-needed training method in robot-assisted rehabilitation.
    Wang F; Barkana DE; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):571-9. PubMed ID: 20639181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities.
    Li C; Rusák Z; Horváth I; Ji L
    Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arm stiffness during assisted movement after stroke: the influence of visual feedback and training.
    Piovesan D; Morasso P; Giannoni P; Casadio M
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):454-65. PubMed ID: 23193322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of robot-guided passive stretching and active movement training of ankle and mobility impairments in stroke.
    Waldman G; Yang CY; Ren Y; Liu L; Guo X; Harvey RL; Roth EJ; Zhang LQ
    NeuroRehabilitation; 2013; 32(3):625-34. PubMed ID: 23648617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
    Hu XL; Tong KY; Song R; Zheng XJ; Leung WW
    Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bilateral priming accelerates recovery of upper limb function after stroke: a randomized controlled trial.
    Stinear CM; Petoe MA; Anwar S; Barber PA; Byblow WD
    Stroke; 2014 Jan; 45(1):205-10. PubMed ID: 24178916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of upper limb sense of position in healthy individuals and patients after stroke.
    Cusmano I; Sterpi I; Mazzone A; Ramat S; Delconte C; Pisano F; Colombo R
    J Healthc Eng; 2014; 5(2):145-62. PubMed ID: 24918181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance-Based Hybrid Control of a Cable-Driven Upper-Limb Rehabilitation Robot.
    Li X; Yang Q; Song R
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1351-1359. PubMed ID: 32997619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process.
    Duret C; Courtial O; Grosmaire AG; Hutin E
    Biomed Res Int; 2015; 2015():482389. PubMed ID: 25821804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bimanual elbow robotic orthoses: preliminary investigations on an impairment force-feedback rehabilitation method.
    Herrnstadt G; Alavi N; Randhawa BK; Boyd LA; Menon C
    Front Hum Neurosci; 2015; 9():169. PubMed ID: 25870555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [ARMOR: an electromechanical robot for upper limb training following stroke. A prospective randomised controlled pilot study].
    Mayr A; Kofler M; Saltuari L
    Handchir Mikrochir Plast Chir; 2008 Feb; 40(1):66-73. PubMed ID: 18322901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis.
    Mazzoleni S; Sale P; Tiboni M; Franceschini M; Carrozza MC; Posteraro F
    Am J Phys Med Rehabil; 2013 Oct; 92(10 Suppl 2):e26-37. PubMed ID: 24052027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.