BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22472015)

  • 1. Using ultrasound CBE imaging without echo shift compensation for temperature estimation.
    Tsui PH; Chien YT; Liu HL; Shu YC; Chen WS
    Ultrasonics; 2012 Sep; 52(7):925-35. PubMed ID: 22472015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach for the visualization of temperature distribution in tissues according to changes in ultrasonic backscattered energy.
    Xia J; Li Q; Liu HL; Chen WS; Tsui PH
    Comput Math Methods Med; 2013; 2013():682827. PubMed ID: 24260041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy.
    Arthur RM; Basu D; Guo Y; Trobaugh JW; Moros EG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1724-33. PubMed ID: 20679004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of ultrasonic backscattered energy in motion-compensated images.
    Arthur RM; Trobaugh JW; Straube WL; Moros EG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1644-52. PubMed ID: 16382617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound temperature estimation based on probability variation of backscatter data.
    Tsui PH; Shu YC; Chen WS; Liu HL; Hsiao IT; Chien YT
    Med Phys; 2012 May; 39(5):2369-85. PubMed ID: 22559607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation model for ultrasonic temperature imaging using change in backscattered energy.
    Trobaugh JW; Arthur RM; Straube WL; Moros EG
    Ultrasound Med Biol; 2008 Feb; 34(2):289-98. PubMed ID: 17935869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo change in ultrasonic backscattered energy with temperature in motion-compensated images.
    Arthur RM; Straube WL; Trobaugh JW; Moros EG
    Int J Hyperthermia; 2008 Aug; 24(5):389-98. PubMed ID: 18608589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive calibrated tissue temperature estimation using backscattered energy of acoustic harmonics.
    Shaswary E; Assi H; Yang C; Kumaradas JC; Kolios MC; Peyman G; Tavakkoli J
    Ultrasonics; 2021 Jul; 114():106406. PubMed ID: 33691235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of pixel shift in ultrasound images due to local temperature changes during the laser interstitial thermotherapy of liver: in vitro study.
    Mokhtari-Dizaji M; Gorjiara T; Ghanaati H
    Ultrasound Med Biol; 2007 Jun; 33(6):934-40. PubMed ID: 17466443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring Microwave Ablation Using Ultrasound Echo Decorrelation Imaging: An
    Zhou Z; Wang Y; Song S; Wu W; Wu S; Tsui PH
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive temperature estimation based on the energy of backscattered ultrasound.
    Arthur RM; Straube WL; Starman JD; Moros EG
    Med Phys; 2003 Jun; 30(6):1021-9. PubMed ID: 12852524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring radiofrequency ablation with ultrasound Nakagami imaging.
    Wang CY; Geng X; Yeh TS; Liu HL; Tsui PH
    Med Phys; 2013 Jul; 40(7):072901. PubMed ID: 23822452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast temperature estimation from undersampled k-space with fully-sampled center for MR guided microwave ablation.
    Wang F; Dong Z; Chen S; Chen B; Yang J; Wei X; Wang S; Ying K
    Magn Reson Imaging; 2016 Oct; 34(8):1171-80. PubMed ID: 27211258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time calibration of temperature estimates during radiofrequency ablation.
    Varghese T; Daniels MJ
    Ultrason Imaging; 2004 Jul; 26(3):185-200. PubMed ID: 15754799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic evaluation of microwave-induced thermal lesions based on wavelet analysis of mean scatterer spacing.
    Zhou Z; Sheng L; Wu S; Yang C; Zeng Y
    Ultrasonics; 2013 Sep; 53(7):1325-31. PubMed ID: 23648210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound single-phase CBE imaging for monitoring radiofrequency ablation.
    Zhang L; Li Q; Wang CY; Tsui PH
    Int J Hyperthermia; 2018; 35(1):548-558. PubMed ID: 30354749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrast-enhanced ultrasound to ultrasound fusion during microwave ablation: feasibility study in a perfused porcine liver model.
    Monsky W; Keravnou C; Averkiou M
    J Ultrasound; 2019 Sep; 22(3):323-335. PubMed ID: 30811016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual energy computed tomography thermometry during hepatic microwave ablation in an ex-vivo porcine model.
    Paul J; Vogl TJ; Chacko A
    Phys Med; 2015 Nov; 31(7):683-91. PubMed ID: 26070238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring microwave ablation using ultrasound homodyned K imaging based on the noise-assisted correlation algorithm: An ex vivo study.
    Song S; Tsui PH; Wu W; Wu S; Zhou Z
    Ultrasonics; 2021 Feb; 110():106287. PubMed ID: 33091652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring the formation of thermal lesions with heat-induced echo-strain imaging: a feasibility study.
    Souchon R; Bouchoux G; Maciejko E; Lafon C; Cathignol D; Bertrand M; Chapelon JY
    Ultrasound Med Biol; 2005 Feb; 31(2):251-9. PubMed ID: 15708465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.