BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22472015)

  • 21. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation.
    Liu YD; Li Q; Zhou Z; Yeah YW; Chang CC; Lee CY; Tsui PH
    PLoS One; 2017; 12(8):e0182457. PubMed ID: 28837584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of Using Ultrasonic Nakagami Imaging for Monitoring Microwave-Induced Thermal Lesion in Ex Vivo Porcine Liver.
    Zhang S; Han Y; Zhu X; Shang S; Huang G; Zhang L; Niu G; Wang S; He X; Wan M
    Ultrasound Med Biol; 2017 Feb; 43(2):482-493. PubMed ID: 27894833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-echo Z-shimmed proton resonance frequency-shift magnetic resonance thermometry near metallic ablation probes: Technique and temperature precision.
    Zhang Y; Poorman ME; Grissom WA
    Magn Reson Med; 2017 Dec; 78(6):2299-2306. PubMed ID: 28185304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.
    Hsiao YS; Deng CX
    Ultrasound Med Biol; 2016 Feb; 42(2):503-17. PubMed ID: 26547634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-invasive estimation of hyperthermia temperatures with ultrasound.
    Arthur RM; Straube WL; Trobaugh JW; Moros EG
    Int J Hyperthermia; 2005 Sep; 21(6):589-600. PubMed ID: 16147442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noninvasive microwave ablation zone radii estimation using x-ray CT image analysis.
    Weiss N; Goldberg SN; Nissenbaum Y; Sosna J; Azhari H
    Med Phys; 2016 Aug; 43(8):4476. PubMed ID: 27487864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional ultrasonic Nakagami imaging for tissue characterization.
    Tsui PH; Hsu CW; Ho MC; Chen YS; Lin JJ; Chang CC; Chu CC
    Phys Med Biol; 2010 Oct; 55(19):5849-66. PubMed ID: 20844338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feasibility of detecting change in backscattered energy of acoustic harmonics in locally heated tissues.
    Maraghechi B; Kolios MC; Tavakkoli J
    Int J Hyperthermia; 2019; 36(1):964-974. PubMed ID: 31542971
    [No Abstract]   [Full Text] [Related]  

  • 29. Imaging of temperature-induced echo strain: preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery.
    Miller NR; Bamber JC; ter Haar GR
    Ultrasound Med Biol; 2004 Mar; 30(3):345-56. PubMed ID: 15063516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decorrelated compounding of synthetic aperture ultrasound imaging to detect low contrast thermal lesions induced by focused ultrasound.
    Nguyen M; Zhao N; Xu Y; Tavakkoli JJ
    Ultrasonics; 2023 Sep; 134():107098. PubMed ID: 37437400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers.
    Bazán I; Vazquez M; Ramos A; Vera A; Leija L
    Ultrasonics; 2009 Mar; 49(3):358-76. PubMed ID: 19100591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlations between B-mode ultrasonic image texture features and tissue temperature in microwave ablation.
    Yang C; Zhu H; Wu S; Bai Y; Gao H
    J Ultrasound Med; 2010 Dec; 29(12):1787-99. PubMed ID: 21098851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature monitoring utilising thermoacoustic signals during pulsed microwave thermotherapy: a feasibility study.
    Lou C; Xing D
    Int J Hyperthermia; 2010; 26(4):338-46. PubMed ID: 20345268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multimodality quantitative ultrasound envelope statistics imaging based support vector machines for characterizing tissue scatterer distribution patterns: Methods and application in detecting microwave-induced thermal lesions.
    Li S; Tsui PH; Wu W; Zhou Z; Wu S
    Ultrason Sonochem; 2024 Jul; 107():106910. PubMed ID: 38772312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasound monitoring of temperature change in liver tissue during laser thermotherapy: 10 degrees C intervals.
    Mokhtari-Dizaji M; Gorji-Ara T; Ghanaeati H; Kalbasi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2130-3. PubMed ID: 18002409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Contrast Ultrasonic Method With Multi-Spatiotemporal Compounding for Monitoring Catheter-Based Ultrasound Thermal Therapy: Development and Ex Vivo Evaluations.
    Wang D; Adams MS; Jones PD; Liu D; Burdette EC; Diederich CJ
    IEEE Trans Biomed Eng; 2021 Oct; 68(10):3131-3141. PubMed ID: 33755552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasound simulation of real-time temperature estimation during radiofrequency ablation using finite element models.
    Daniels MJ; Jiang J; Varghese T
    Ultrasonics; 2008 Mar; 48(1):40-55. PubMed ID: 18082236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An investigation of the use of transmission ultrasound to measure acoustic attenuation changes in thermal therapy.
    Parmar N; Kolios MC
    Med Biol Eng Comput; 2006 Jul; 44(7):583-91. PubMed ID: 16937194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature Monitoring During Microwave Hyperthermia Based on BP-Nakagami Distribution.
    Liu Z; Du Y; Meng X; Li C; Zhou L
    J Ultrasound Med; 2023 Sep; 42(9):1965-1975. PubMed ID: 36880695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating tissue changes with ultrasound during radiofrequency ablation.
    Gaitini D; Zivari M; Abadi S; Goldberg SN; Adam D
    Ultrasound Med Biol; 2008 Apr; 34(4):586-97. PubMed ID: 18096303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.