These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22472075)

  • 1. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum.
    Dombrowski JE; Martin RC
    J Plant Physiol; 2012 Jun; 169(9):915-9. PubMed ID: 22472075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green leaf volatiles, fire and nonanoic acid activate MAPkinases in the model grass species Lolium temulentum.
    Dombrowski JE; Martin RC
    BMC Res Notes; 2014 Nov; 7():807. PubMed ID: 25403248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses.
    Dombrowski JE; Hind SR; Martin RC; Stratmann JW
    Plant Sci; 2011 May; 180(5):686-93. PubMed ID: 21421419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of the model grass Lolium temulentum exposed to green leaf volatiles.
    Dombrowski JE; Kronmiller BA; Hollenbeck VG; Rhodes AC; Henning JA; Martin RC
    BMC Plant Biol; 2019 May; 19(1):222. PubMed ID: 31138172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of MAP kinases by green leaf volatiles in grasses.
    Dombrowski JE; Martin RC
    BMC Res Notes; 2018 Jan; 11(1):79. PubMed ID: 29378628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome Analysis of Wounding in the Model Grass
    Dombrowski JE; Kronmiller BA; Hollenbeck V; Martin RC
    Plants (Basel); 2020 Jun; 9(6):. PubMed ID: 32580425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis.
    Baldwin JC; Dombrowski JE
    Plant Sci; 2006 Oct; 171(4):459-69. PubMed ID: 25193643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and characterization of a salt stress-inducible small GTPase gene from the model grass species Lolium temulentum.
    Dombrowski JE; Baldwin JC; Martin RC
    J Plant Physiol; 2008 Apr; 165(6):651-61. PubMed ID: 17707946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant Mitogen-Activated Protein Kinase Cascades in Environmental Stresses.
    Lin L; Wu J; Jiang M; Wang Y
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheat mitogen-activated protein kinase gene TaMPK4 improves plant tolerance to multiple stresses through modifying root growth, ROS metabolism, and nutrient acquisitions.
    Hao L; Wen Y; Zhao Y; Lu W; Xiao K
    Plant Cell Rep; 2015 Dec; 34(12):2081-97. PubMed ID: 26275989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways.
    Sangwan V; Orvar BL; Beyerly J; Hirt H; Dhindsa RS
    Plant J; 2002 Sep; 31(5):629-38. PubMed ID: 12207652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress memory induced transcriptional and metabolic changes of perennial ryegrass (Lolium perenne) in response to salt stress.
    Hu T; Jin Y; Li H; Amombo E; Fu J
    Physiol Plant; 2016 Jan; 156(1):54-69. PubMed ID: 25913889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues.
    Wang J; Ding H; Zhang A; Ma F; Cao J; Jiang M
    J Integr Plant Biol; 2010 May; 52(5):442-52. PubMed ID: 20537040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase.
    Xiong L; Yang Y
    Plant Cell; 2003 Mar; 15(3):745-59. PubMed ID: 12615946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant MAP kinase pathways: how many and what for?
    Wrzaczek M; Hirt H
    Biol Cell; 2001 Sep; 93(1-2):81-7. PubMed ID: 11730326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and characterization of a novel MAP kinase gene in Chorispora bungeana.
    Zhang T; Liu Y; Xue L; Xu S; Chen T; Yang T; Zhang L; An L
    Plant Physiol Biochem; 2006 Jan; 44(1):78-84. PubMed ID: 16531060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance.
    Bocian A; Kosmala A; Rapacz M; Jurczyk B; Marczak Ł; Zwierzykowski Z
    J Plant Physiol; 2011 Jul; 168(11):1271-9. PubMed ID: 21489653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6.
    Ichimura K; Mizoguchi T; Yoshida R; Yuasa T; Shinozaki K
    Plant J; 2000 Dec; 24(5):655-65. PubMed ID: 11123804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases.
    Cardinale F; Meskiene I; Ouaked F; Hirt H
    Plant Cell; 2002 Mar; 14(3):703-11. PubMed ID: 11910015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of MAP kinase signaling pathway in the mussel Mytilus galloprovincialis as biomarker of environmental pollution.
    Châtel A; Hamer B; Talarmin H; Dorange G; Schröder HC; Müller WE
    Aquat Toxicol; 2010 Mar; 96(4):247-55. PubMed ID: 19948362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.