BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22472559)

  • 1. Profiling thiol redox proteome using isotope tagging mass spectrometry.
    Parker J; Zhu N; Zhu M; Chen S
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22472559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine Reactivity Profiling to Unveil Redox Regulation in Phytopathogens.
    Morimoto K; Stegmann M; Kaschani F; Mohammed S; van der Hoorn RAL
    Methods Mol Biol; 2022; 2447():105-117. PubMed ID: 35583776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. tomato disease development in tomato and Arabidopsis.
    Ishiga Y; Ishiga T; Wangdi T; Mysore KS; Uppalapati SR
    Mol Plant Microbe Interact; 2012 Mar; 25(3):294-306. PubMed ID: 22112219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants.
    Keith RC; Keith LMW; Hernández-Guzmán G; Uppalapati SR; Bender CL
    Microbiology (Reading); 2003 May; 149(Pt 5):1127-1138. PubMed ID: 12724374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proteomics of tomato defense against Pseudomonas syringae infection.
    Parker J; Koh J; Yoo MJ; Zhu N; Feole M; Yi S; Chen S
    Proteomics; 2013 Jun; 13(12-13):1934-46. PubMed ID: 23533086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions.
    López-Solanilla E; Bronstein PA; Schneider AR; Collmer A
    Mol Microbiol; 2004 Oct; 54(2):353-65. PubMed ID: 15469508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Isotope-Coded Affinity Tag Method for Quantitative Protein Profile Comparison and Relative Quantitation of Cysteine Redox Modifications.
    Chan JCY; Zhou L; Chan ECY
    Curr Protoc Protein Sci; 2015 Nov; 82():23.2.1-23.2.19. PubMed ID: 26521713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resin-Assisted Capture Coupled with Isobaric Tandem Mass Tag Labeling for Multiplexed Quantification of Protein Thiol Oxidation.
    Gaffrey MJ; Day NJ; Li X; Qian WJ
    J Vis Exp; 2021 Jun; (172):. PubMed ID: 34223836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C; Shuster DZ; Roman Gomez R; Sant KE; Reed MS; Pohl J; Hansen JM
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000.
    Li Z; Tian Y; Xu J; Fu X; Gao J; Wang B; Han H; Wang L; Peng R; Yao Q
    Plant Physiol Biochem; 2018 Nov; 132():683-695. PubMed ID: 30146417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phytotoxin coronatine induces light-dependent reactive oxygen species in tomato seedlings.
    Ishiga Y; Uppalapati SR; Ishiga T; Elavarthi S; Martin B; Bender CL
    New Phytol; 2009; 181(1):147-160. PubMed ID: 18823314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age.
    Stanhope SC; Brandwine-Shemmer T; Blum HR; Doud EH; Jannasch A; Mosley AL; Minke B; Weake VM
    Redox Biol; 2023 Jul; 63():102723. PubMed ID: 37146512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling.
    Su D; Gaffrey MJ; Guo J; Hatchell KE; Chu RK; Clauss TR; Aldrich JT; Wu S; Purvine S; Camp DG; Smith RD; Thrall BD; Qian WJ
    Free Radic Biol Med; 2014 Feb; 67():460-70. PubMed ID: 24333276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A virus-induced gene silencing screen identifies a role for Thylakoid Formation1 in Pseudomonas syringae pv tomato symptom development in tomato and Arabidopsis.
    Wangdi T; Uppalapati SR; Nagaraj S; Ryu CM; Bender CL; Mysore KS
    Plant Physiol; 2010 Jan; 152(1):281-92. PubMed ID: 19915014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca
    Fishman MR; Zhang J; Bronstein PA; Stodghill P; Filiatrault MJ
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29263098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas syringae pv. tomato OxyR Is Required for Virulence in Tomato and Arabidopsis.
    Ishiga Y; Ichinose Y
    Mol Plant Microbe Interact; 2016 Feb; 29(2):119-31. PubMed ID: 26554736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Pseudomonas syringae effector HopQ1 promotes bacterial virulence and interacts with tomato 14-3-3 proteins in a phosphorylation-dependent manner.
    Li W; Yadeta KA; Elmore JM; Coaker G
    Plant Physiol; 2013 Apr; 161(4):2062-74. PubMed ID: 23417089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural variation for unusual host responses and flagellin-mediated immunity against Pseudomonas syringae in genetically diverse tomato accessions.
    Roberts R; Mainiero S; Powell AF; Liu AE; Shi K; Hind SR; Strickler SR; Collmer A; Martin GB
    New Phytol; 2019 Jul; 223(1):447-461. PubMed ID: 30861136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.
    Giese J; Eirich J; Post F; Schwarzländer M; Finkemeier I
    Methods Mol Biol; 2022; 2363():215-234. PubMed ID: 34545496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.