These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22472707)

  • 1. Voluntary changes in step width and step length during human walking affect dynamic margins of stability.
    McAndrew Young PM; Dingwell JB
    Gait Posture; 2012 Jun; 36(2):219-24. PubMed ID: 22472707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voluntarily changing step length or step width affects dynamic stability of human walking.
    McAndrew Young PM; Dingwell JB
    Gait Posture; 2012 Mar; 35(3):472-7. PubMed ID: 22172233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does increased gait variability improve stability when faced with an expected balance perturbation during treadmill walking?
    Nestico J; Novak A; Perry SD; Mansfield A
    Gait Posture; 2021 May; 86():94-100. PubMed ID: 33711616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking in an unstable environment: strategies used by transtibial amputees to prevent falling during gait.
    Hak L; van Dieën JH; van der Wurff P; Prins MR; Mert A; Beek PJ; Houdijk H
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2186-93. PubMed ID: 23916618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between margin of stability and deviations in spatiotemporal gait features in healthy young adults.
    Sivakumaran S; Schinkel-Ivy A; Masani K; Mansfield A
    Hum Mov Sci; 2018 Feb; 57():366-373. PubMed ID: 28987772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations.
    Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH
    Gait Posture; 2012 Jun; 36(2):260-4. PubMed ID: 22464635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic stability during split-belt walking and the relationship with step length symmetry.
    Darter BJ; Labrecque BA; Perera RA
    Gait Posture; 2018 May; 62():86-91. PubMed ID: 29533870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of narrow base gait on mediolateral balance control in young and older adults.
    Arvin M; Mazaheri M; Hoozemans MJM; Pijnappels M; Burger BJ; Verschueren SMP; van Dieën JH
    J Biomech; 2016 May; 49(7):1264-1267. PubMed ID: 27018156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Control of Dynamic Balance across the Adult Lifespan.
    Vervoort D; Buurke TJW; Vuillerme N; Hortobágyi T; DEN Otter R; Lamoth CJC
    Med Sci Sports Exerc; 2020 Oct; 52(10):2270-2277. PubMed ID: 32301854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Margins of stability in young adults with traumatic transtibial amputation walking in destabilizing environments.
    Beltran EJ; Dingwell JB; Wilken JM
    J Biomech; 2014 Mar; 47(5):1138-43. PubMed ID: 24444777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic instability during post-stroke hemiparetic walking.
    Kao PC; Dingwell JB; Higginson JS; Binder-Macleod S
    Gait Posture; 2014 Jul; 40(3):457-63. PubMed ID: 24931112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic obstructive pulmonary disease patients increase medio-lateral stability and limit changes in antero-posterior stability to curb energy expenditure.
    Fallahtafti F; Curtze C; Samson K; Yentes JM
    Gait Posture; 2020 Jan; 75():142-148. PubMed ID: 31683184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic stability and stepping strategies of young healthy adults walking on an oscillating treadmill.
    Onushko T; Boerger T; Van Dehy J; Schmit BD
    PLoS One; 2019; 14(2):e0212207. PubMed ID: 30759162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic margin of stability during gait is altered in persons with multiple sclerosis.
    Peebles AT; Reinholdt A; Bruetsch AP; Lynch SG; Huisinga JM
    J Biomech; 2016 Dec; 49(16):3949-3955. PubMed ID: 27889188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of step width on balance control and response strategies during perturbed walking in healthy young adults.
    Molina LK; Small GH; Neptune RR
    J Biomech; 2023 Aug; 157():111731. PubMed ID: 37494856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepping strategies for regulating gait adaptability and stability.
    Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH
    J Biomech; 2013 Mar; 46(5):905-11. PubMed ID: 23332822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability-normalised walking speed: A new approach for human gait perturbation research.
    McCrum C; Willems P; Karamanidis K; Meijer K
    J Biomech; 2019 Apr; 87():48-53. PubMed ID: 30827703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent tuning of balance control and aftereffects following optical flow perturbation training in older adults.
    Richards JT; Selgrade BP; Qiao M; Plummer P; Wikstrom EA; Franz JR
    J Neuroeng Rehabil; 2019 Jul; 16(1):81. PubMed ID: 31262319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetic cost of walking with increased step variability.
    O'Connor SM; Xu HZ; Kuo AD
    Gait Posture; 2012 May; 36(1):102-7. PubMed ID: 22459093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.