BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22473474)

  • 1. Facilitated CO2 transport membranes utilizing positively polarized copper nanoparticles.
    Lee JH; Hong J; Kim JH; Kang YS; Kang SW
    Chem Commun (Camb); 2012 May; 48(43):5298-300. PubMed ID: 22473474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ionic liquid impurities on the synthesis of silver nanoparticles.
    Lazarus LL; Riche CT; Malmstadt N; Brutchey RL
    Langmuir; 2012 Nov; 28(45):15987-93. PubMed ID: 23092200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoelectron spectroscopy of ionic liquid-based interfaces.
    Lovelock KR; Villar-Garcia IJ; Maier F; Steinrück HP; Licence P
    Chem Rev; 2010 Sep; 110(9):5158-90. PubMed ID: 20593903
    [No Abstract]   [Full Text] [Related]  

  • 4. Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis.
    Schütte K; Meyer H; Gemel C; Barthel J; Fischer RA; Janiak C
    Nanoscale; 2014 Mar; 6(6):3116-26. PubMed ID: 24492885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.
    Melo CI; Szczepańska A; Bogel-Łukasik E; Nunes da Ponte M; Branco LC
    ChemSusChem; 2016 May; 9(10):1081-4. PubMed ID: 27114238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids.
    Zhang H; Cui H
    Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors Affecting the Separation Performance in Ionic Liquid/Cu Nanocomposite Membranes for Facilitated CO2 Transport.
    Chang J; Min KJ; Lee H; Kim JK; Kang SW
    J Nanosci Nanotechnol; 2016 Mar; 16(3):3110-4. PubMed ID: 27455770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galvanic replacement mediated transformation of Ag nanospheres into dendritic Au-Ag nanostructures in the ionic liquid [BMIM][BF4].
    Pearson A; O'Mullane AP; Bansal V; Bhargava SK
    Chem Commun (Camb); 2010 Feb; 46(5):731-3. PubMed ID: 20087502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol.
    Cao SW; Zhu YJ; Cheng GF; Huang YH
    J Hazard Mater; 2009 Nov; 171(1-3):431-5. PubMed ID: 19564076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid ionic liquid-based facilitated transport membranes for CO2 separation.
    Kasahara S; Kamio E; Ishigami T; Matsuyama H
    Chem Commun (Camb); 2012 Jul; 48(55):6903-5. PubMed ID: 22374137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fixation of CO2 by electrocatalytic reduction and electropolymerization in ionic liquid-H2O solution.
    Chu D; Qin G; Yuan X; Xu M; Zheng P; Lu J
    ChemSusChem; 2008; 1(3):205-9. PubMed ID: 18605207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of sputter-deposited gold nanoparticles in imidazolium ionic liquids.
    Vanecht E; Binnemans K; Patskovsky S; Meunier M; Seo JW; Stappers L; Fransaer J
    Phys Chem Chem Phys; 2012 Apr; 14(16):5662-71. PubMed ID: 22422275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid.
    Chun YS; Shin JY; Song CE; Lee SG
    Chem Commun (Camb); 2008 Feb; (8):942-4. PubMed ID: 18283343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic gas-to-liquid processing using cobalt nanoparticles dispersed in imidazolium ionic liquids.
    Silva DO; Scholten JD; Gelesky MA; Teixeira SR; Dos SA; Souza-Aguiar EF; Dupont J
    ChemSusChem; 2008; 1(4):291-4. PubMed ID: 18605091
    [No Abstract]   [Full Text] [Related]  

  • 15. Using hydrophilic ionic liquid, [bmim]BF4-ethylene glycol system as a novel media for the rapid synthesis of copper nanoparticles.
    Dewan M; Kumar A; Saxena A; De A; Mozumdar S
    PLoS One; 2012; 7(1):e29131. PubMed ID: 22238589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal synthesis of ionic liquid [Bmim]OH-modified TiO2 nanoparticles with enhanced photocatalytic activity under visible light.
    Hu S; Wang A; Li X; Wang Y; Löwe H
    Chem Asian J; 2010 May; 5(5):1171-7. PubMed ID: 20379993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: a computational investigation.
    Chen JJ; Li WW; Li XL; Yu HQ
    Phys Chem Chem Phys; 2012 Apr; 14(13):4589-96. PubMed ID: 22358056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-organic framework supported ionic liquid membranes for CO2 capture: anion effects.
    Gupta KM; Chen Y; Hu Z; Jiang J
    Phys Chem Chem Phys; 2012 Apr; 14(16):5785-94. PubMed ID: 22433933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption.
    Tang J; Tang H; Sun W; Plancher H; Radosz M; Shen Y
    Chem Commun (Camb); 2005 Jul; (26):3325-7. PubMed ID: 15983662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 as a regulator for the controllable preparation of highly dispersed chitosan-supported Pd catalysts in ionic liquids.
    Xue Z; Sun X; Li Z; Mu T
    Chem Commun (Camb); 2015 Jul; 51(54):10811-4. PubMed ID: 25985823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.