BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22473517)

  • 1. MRI study of subconjunctival and intravitreal injections.
    Li SK; Hao J; Liu H; Lee JH
    J Pharm Sci; 2012 Jul; 101(7):2353-63. PubMed ID: 22473517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of subconjunctival and intrascleral drug delivery to the posterior segment using dynamic contrast-enhanced magnetic resonance imaging.
    Kim SH; Galbán CJ; Lutz RJ; Dedrick RL; Csaky KG; Lizak MJ; Wang NS; Tansey G; Robinson MR
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):808-14. PubMed ID: 17251481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug elimination kinetics following subconjunctival injection using dynamic contrast-enhanced magnetic resonance imaging.
    Kim SH; Csaky KG; Wang NS; Lutz RJ
    Pharm Res; 2008 Mar; 25(3):512-20. PubMed ID: 17674155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging.
    Kim H; Robinson MR; Lizak MJ; Tansey G; Lutz RJ; Yuan P; Wang NS; Csaky KG
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2722-31. PubMed ID: 15277497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of subconjunctival delivery with model ionic permeants and magnetic resonance imaging.
    Li SK; Molokhia SA; Jeong EK
    Pharm Res; 2004 Dec; 21(12):2175-84. PubMed ID: 15648248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of penetration routes and distribution of ionic permeants during and after transscleral iontophoresis with magnetic resonance imaging.
    Molokhia SA; Jeong EK; Higuchi WI; Li SK
    Int J Pharm; 2007 Apr; 335(1-2):46-53. PubMed ID: 17236728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging.
    Kim H; Lizak MJ; Tansey G; Csaky KG; Robinson MR; Yuan P; Wang NS; Lutz RJ
    Ann Biomed Eng; 2005 Feb; 33(2):150-64. PubMed ID: 15771269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocular tissue distribution and pharmacokinetic study of a small 13kDa domain antibody after intravitreal, subconjuctival and eye drop administration in rabbits.
    Gough G; Szapacs M; Shah T; Clements P; Struble C; Wilson R
    Exp Eye Res; 2018 Feb; 167():14-17. PubMed ID: 29074387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocular pharmacokinetic study using T₁ mapping and Gd-chelate- labeled polymers.
    Shi X; Liu X; Wu X; Lu ZR; Li SK; Jeong EK
    Pharm Res; 2011 Dec; 28(12):3180-8. PubMed ID: 21691891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transscleral iontophoretic and intravitreal delivery of a macromolecule: study of ocular distribution in vivo and postmortem with MRI.
    Molokhia SA; Jeong EK; Higuchi WI; Li SK
    Exp Eye Res; 2009 Mar; 88(3):418-25. PubMed ID: 19000673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits.
    Nomoto H; Shiraga F; Kuno N; Kimura E; Fujii S; Shinomiya K; Nugent AK; Hirooka K; Baba T
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4807-13. PubMed ID: 19324856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging study of current and ion delivery into the eye during transscleral and transcorneal iontophoresis.
    Li SK; Jeong EK; Hastings MS
    Invest Ophthalmol Vis Sci; 2004 Apr; 45(4):1224-31. PubMed ID: 15037591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of suprachoroidal drug delivery with subconjunctival and intravitreal routes using noninvasive fluorophotometry.
    Tyagi P; Kadam RS; Kompella UB
    PLoS One; 2012; 7(10):e48188. PubMed ID: 23118950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gadolinium-enhanced 7.0 T magnetic resonance imaging assessment of the aqueous inflow in rat eyes in vivo.
    Li L; Yuan Y; Chen L; Li M; Ji P; Gong J; Zhao Y; Zhang H
    Exp Eye Res; 2017 Sep; 162():18-26. PubMed ID: 28655605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI in ocular drug delivery.
    Li SK; Lizak MJ; Jeong EK
    NMR Biomed; 2008 Nov; 21(9):941-56. PubMed ID: 18186077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry.
    Ghate D; Brooks W; McCarey BE; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2230-7. PubMed ID: 17460284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide.
    Robinson MR; Lee SS; Kim H; Kim S; Lutz RJ; Galban C; Bungay PM; Yuan P; Wang NS; Kim J; Csaky KG
    Exp Eye Res; 2006 Mar; 82(3):479-87. PubMed ID: 16168412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraocular levels of cefuroxime in uninflamed rabbit eyes.
    Koul S; Philipson A; Philipson BT; Kock E; Nylén P
    Acta Ophthalmol (Copenh); 1990 Aug; 68(4):455-65. PubMed ID: 2220364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The difficulty of determining the route of intraocular penetration of gentamicin after subconjunctival injection in the rabbit.
    Barza M; Kane A; Baum J
    Invest Ophthalmol Vis Sci; 1981 Apr; 20(4):509-14. PubMed ID: 7216668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time MRI monitoring of transcatheter hepatic artery contrast agent delivery in rabbits.
    Sato KT; Larson AC; Rhee TK; Salem RA; Nemcek AA; Mounajjed T; Paunesku T; Woloschak G; Nikolaides P; Omary RA
    Acad Radiol; 2005 Oct; 12(10):1342-50. PubMed ID: 16179211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.